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We prove converse and smoothness theorems of polynomial approximation in
weighted Lp spaces with norm & fW&Lp(R) (0<p��) for Erdo� s weights on the real

line. In particular we prove characterization theorems involving realization func-
tionals and thereby establish some interesting properties of our weighted modulus
of continuity. � 1998 Academic Press

1. INTRODUCTION AND STATEMENT OF RESULTS

Let W :=exp(&Q) where Q: R � R is even and is of faster than polynomial
growth at infinity. Then W is called an Erdo� s weight.

Archetypal examples of such weights are

(a) Wk, :(x) :=exp(&expk ( |x|:)), :>1, k�1, (1.1)

where expk( )=exp(exp( } } } (exp( )))) denotes the k th iterated
exponential.

(b) WA, ;(x) :=exp(&exp(log(A+x2);)), (1.2)

where ;>1 and A is large enough.

For more on the subject, we refer the reader to [16, 18] and the references
cited therein.

Recently, we investigated Jackson theorems for large classes of Erdo� s
weights in Lp (0<p��) [2]. More precisely, we estimated how fast

En[ f ]W, p := inf
P # Pn

&( f &P)W&Lp(R) � 0, n � �.
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Here En[ f ]W, p is the error of best weighted approximation for suitable
f : R � R and Pn denotes the class of polynomials of degree at most n.

Direct and converse theorems for rates of approximation are an exten-
sively researched and widely studied subject. For weights on R, analogues
of Jackson�Bernstein theorems were initiated by Dzrbasjan, but were more
intensively studied by Freud in the 1960s�1970s [10, 11, 23]. Since then,
their ideas have been generalized and extended by many. See [2, 7�9, 12,
19] and the references cited therein.

In this paper, we investigate converse theorems of polynomial approxima-
tion for Erdo� s weights. To state our results, we need a suitable class of weights
and various quantities.

Throughout, C, C1 , C2 , ..., will denote positive constants independent of
n, x and P # Pn not necessarily the same in different occurrences. We write
C{C(L) to mean that the constant is independent of L.

Moreover for real sequences An and Bn�0, An=O(Bn), AntBn ,
and An=o(Bn) will mean respectively that there exist constants
C1 , C2 , C3>0 independent of n such that An �Bn�C1 , C2�An �Bn�C3

and limn � � |An�Bn |=0. Similar notation will be used for functions and
sequences of functions.

We shall say that a function

f : (a, b) � (0, �)

is quasi-increasing if _C>0 such that

a<x< y<b O f (x)�Cf ( y).

We need a suitable class of weights:

Definition 1.1. Let W(x) :=exp[&Q(x)] where Q: R � R is even
and continuous satisfying,

(a) xQ$(x) is strictly increasing in (0, �) with

lim
x � 0 +

xQ$(x)=0.

(b) The function

T(x) :=
xQ$(x)
Q(x)

(1.3)

is quasi-increasing in (C, �) for some C>0 and

lim
x � �

T(x)=�. (1.4)
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(c) Assume

yQ$( y)
xQ$(x)

�C1 \Q( y)
Q(x)+

C3

, y�x�C2 . (1.5)

for some C1 , C2 , C3>0. Then Q is called the external field associated with
W and we write W # E1 .

Some Remarks. (a) The function T serves as a measure of the regularity
of growth of Q. In particular, it is not difficult to show that (1.4) forces Q
to be of faster than polynomial growth at infinity.

(b) We need the condition that xQ$(x) be strictly increasing in order
to ensure the existence of the Mhaskar�Rakhmanov�Saff number, au defined
as the positive root of the equation

u=
2
? |

1

0

autQ$(au t) dt

- 1&t2
, u>0. (1.6)

For those unfamiliar, the quantity (PW ), P # Pn ``lives'' most of the time
in [&an , an ]. We refer the interested reader to [17, 21, 26] for more on
an and its ``cousin'' qn , the Freud number. For a different perspective on
discrete sets and to concave external fields, we refer the reader to [4,5].
For Erdo� s weights, an has the effect that although Q(x) might grow very
rapidly for large x, Q(au) does not exceed a positive power of u. For example,
for Wk, : , au grows like (logk u)1�: where logk( )=log(log( } } } (log( ))))
denotes the k th iterated logarithm.

(c) Inequality (1.5) is a weak regularity condition on T, for one has
typically for each =>0,

T(x)=O(log Q$(x))1+=, x � �. (1.7)

For example, for Wk, :(x),

T(x)=:x: _ `
k&1

j=1

exp j (x:)& ,

so that C3 can be made arbitrarily close to 1. This is also the case for WA, ; .

We proceed to define our modulus of continuity and realization functional
as in [1�3].
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For h>0, an interval J, r�1, and f : R � R we define

2r
h( f, x, J ) :={ :

r

i=0
\r

i+ (&1) i f \x+
rh
2

&ih+ , x\
rh
2

# J
(1.8)

0, otherwise

to be the rth symmetric difference of f. If J is not specified, it can be taken
as R.

Following ideas of [9], to reflect endpoint effects in our approximation,
we need our increment h in (1.8) to depend on x and in particular on the
function,

8t(x) := } 1&
|x|

_(t) }
1�2

+T(_(t))&1�2, x # R, (1.9)

where

_(t) :=inf {au :
au

u
�t= (1.10)

and t>0 but is typically small enough.
An easy way to understand _ is to see it as the inverse of the map

u: �
au

u

which decays to zero as u � �. Clearly _ is decreasing.
We may then define our weighted modulus of continuity for 0<p��

and r�1 by

wr, p( f, W, t) := sup
0<h�t

&W(2r
h8t(x)( f ))&Lp( |x|�_(2t))

+ inf
R of deg�r&1

&( f &R)W&Lp( |x|�_(4t)) . (1.11)

Further, we define its averaged ``cousin,''

w� r, p( f, W, t) :=\1
t |

t

0
&W(2r

h8t (x)( f ))& p
Lp( |x|�_(2t)) dh+

1�p

+ inf
R of deg�r&1

&( f &R)W&Lp( |x|�_(4t)) (1.12)

(if p=� we set w� r, p=wr, p).
Clearly w� r, p( f, W, t)�wr, p( f, W, t).
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Some Remarks Concerning Our Modulus. (a) Although at first difficult
to assimilate, we see that the definition of _ in (1.10) is natural, as at least
for purposes of approximation by polynomials of degree �n, we may think
of t=an�n (recall t is small) so that _(t) grows like an . Following [9], our
modulus consists of two parts. The ``main'' part involves r th symmetric
differences over the interval [&an�2 , an�2]. The ``tail'' involves an error of
weighted polynomial approximation over the remainder of R and is necessary
because of the inability of (PnW ) to approximate beyond [&an�2 , an�2]. Its
presence ensures that at least for f # Pr&1 ,

wr, p( f, W, t)#0.

For converse saturation type results, we refer the reader to [3].

(b) We note that the function 8t describes the improvement in the
degree of approximation near \an�2 , in much the same way that - 1&x2

does for weights on [&1, 1].

(c) We observe that unlike the moduli in [8, 9], our modulus w is
not necessary monotone increasing in t. This created severe difficulties in
our analysis. The results of [2] show that under additional assumptions on
W it is possible to replace our modulus by one that is increasing in t;
however, for E1 this is an open question.

In [2], we proved the following Jackson theorems:

Theorem 1.2. Let W # E1 , r�1, and 0<p��. Then for all f : R � R
for which fW # Lp(R) (and for p=�, we require f to be continuous, and fW
to vanish at \�), we have for n�C,

En[ f ]W, p�C1w� r, p \ f, W, C2

an

n +�C1wr, p \ f, W, C2

an

n + , (1.13)

where the Cj , j=1, 2, are independent of f and n.
Moreover, given *(n) # [ 4

5 , 1],

En[ f ]W, p�C1w� r, p \ f, W, C2 *(n)
an

n +�C1wr, p \ f, W, C2*(n)
an

n + .

(1.14)

Some remarks. (a) The result above indicated a Nikolskii�Timan�Brudnyi
effect whereby, as in weights on [&1, 1], we have better approximation towards
the endpoints of the Mhaskar�Rakhmanov�Saff interval.

(b) We remark that with a little extra effort, we may replace C in
(1.13) by r&1 (cf. [3]).
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In establishing our converse theorems, we need the notion of the K-func-
tional. While K-functionals were introduced in the context of interpolation
of spaces, one of their most important applications has been in the analysis
of moduli of continuity, and in converse theorems in approximation theory.
J. Peetre first made the connection between his K-functional and the modulus
of continuity in 1968. His ideas have been generalized and extended by
many including Ditzian, Freud, Hristov, Ivanov, Lubinsky, Mhaskar, and
Totik. We refer the reader to [8�12] and the references cited therein.

The Ditzian�Totik r th order K-Functional has the form

K 7
r, p( f, W, tr) := inf

continuous

g
g (r&1) locally absolutely

[&( f &g)W&Lp(R)+tr &g(r)W&Lp(R)].

(1.15)

Here, t>0, r�1, and p�1.
We may think of the second term of (1.15) measuring the smooth part

of f and the first part measuring the distance of f to that smooth part [9].
The idea, following a general technique of Ditzian, Hristov, and Ivanov
[7], is to prove inequalities of the form

w7
r, p ( f, W, :t)�C1 K 7

r, p ( f, W, tr)�C2 w7
r, p ( f, W, t) (1.16)

for a suitable modulus w7
r, p ( f, .). Here :>0 is fixed in advance, C1 , C2>0,

and t is small enough.
Unfortunately, K7#0 in Lp (0<p<1) [7], so we need the notion of a

realization functional, a concept attributed to Hristov and Ivanov. Our
realization functional has the form

Kr, p( f, W, tr) := inf
P # Pn

[&( f &P)W&Lp(R)+tr &P(r)8r
t W&Lp(R)], (1.17)

where t>0, 0<p��, and r�1 are chosen in advance and

n=n(t) :=inf {k:
ak

k
�t= . (1.18)

Further define the ordinary K-functional by

K*r, p( f, W, tr) := inf

continuous

g
g (r&1) locally absolutely

[&( f &g)W&Lp(R)+tr &g(r)8r
t W&Lp(R)].

(1.19)

We begin with our main equivalence result:
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Theorem 1.3. Let W # E1 , L, :>0, r�1, 0<p��, and f as in
Theorem 1.2. Assume that there is a Markov�Bernstein inequality of the form

&R$n8an�nW&Lp(R)�C
n
an

&RnW&Lp(R) , 0<p��, Rn # Pn , (1.20)

where C{C(n, Rn). Then _C1 , C2 , C3>0 independent of f and t such that
for t # (0, t0),

(a) wr, p( f, W, Lt)�C1Kr, p( f, W, tr)�C2 wr, p( f, W, C3 t). (1.21)

Moreover, uniformly for t and f,

(b) wr, p( f, W, t)tw� r, p( f, W, t)tKr, p( f, W, tr) (1.22)

and

(c) wr, p( f, W, :t)twr, p( f, W, t). (1.23)

Note that the constant in the t relation in (1.23) depends on :. For the
exact dependence, we refer the interested reader to [3].

Remark. (a) The Markov inequality (1.20) is true for W # E1 [15].
For this reason, we dispense with the proof here and assume the result. We
refer the interested reader to [8, 19] where similar assumptions were made.

(b) Inequality (1.20) was proved for p=� in [18] and for 0<p<�
in [20] under additional conditions on Q, namely conditions on Q" which
are satisfied for Wk, : and WA, ; given by (1.1) and (1.2).

(c) We finally note that for p�1, the methods of [9] should enable
one to avoid assuming (1.20) altogether. However, as it is needed in the
later corollaries, we do not pursue this idea further here.

Theorem 1.3 allows us to deduce a simpler Jackson theorem to Theorem 1.2:

Corollary 1.4. Assume the hypotheses of Theorem 1.3. Then we have
for n�C1 ,

En[ f ]W, p�C2w� r, p \ f, W,
an

n +�C2wr, p \ f, W,
an

n + . (1.24)

Here, C2 is independent of f and n.
We note that the point of this corollary is that we have removed the

constant from inside the modulus in (1.13) and (1.14).
We have the following converse theorems:

355CONVERSE AND SMOOTHNESS THEOREMS



File: DISTL2 317808 . By:CV . Date:28:04:98 . Time:13:18 LOP8M. V8.B. Page 01:01
Codes: 2400 Signs: 1086 . Length: 45 pic 0 pts, 190 mm

Theorem 1.5. Assume the hypotheses of Theorem 1.3. Let q=min[1, p].
For 0<t<C, determine n=n(t) by (1.18) and let l=[log2 n]= the largest
integer �log2 n. Then we have

wr, p( f, W, t)�C1tr _ :
l

k=&1

(l&k+1)rq�2 \ 2k

a2k+
rq

E2 k [ f ]q
W, p&

1�q

, (1.25)

where C1{C1( f, t) and where we set E2 &1=E2 0 .

We deduce

Corollary 1.6. Assume the hypotheses of Theorem 1.3. Then for every
0<:<r the following are equivalent:

(a) wr, p( f, W, t)=O(t:), t � 0+, (1.26)

(b) Kr, p( f, W, tr)=O(t:), t � 0+,

(c) En[ f ]W, p=O \an

n +
:

, n � �. (1.27)

Remark. We remark that a different characterization appears in [3]
where : is allowed to equal r.

Finally, we obtain estimates of our modulus in terms of f (r) and deduce
the equivalence of the K-functional with the realization functional for p�1.

Corollary 1.7. Let 1�p�� and assume the hypotheses of Theorem 1.3.

(a) If f (r)W # Lp(R), we have for t # (0, C2),

wr, p( f, W, t)�C1 tr & f (r)8r
t W&Lp(R) . (1.28)

Here Cj{Cj ( f, t), j=1, 2.

(b) We have for t # (0, C3),

1�K*r, p( f, W, t)�Kr, p( f, W, t)�C4 . (1.29)

Here Cj{Cj ( f, t), j=3, 4.

Remark. We remark that (1.28) is false for 0<p<1. Indeed set for
= # (0, 1

2)

f=(x) :=0, x # [&1, 0]

=&1x, x # (0, =]

1, x # (=, 1].

356 S. B. DAMELIN



File: DISTL2 317809 . By:CV . Date:28:04:98 . Time:13:18 LOP8M. V8.B. Page 01:01
Codes: 2410 Signs: 1459 . Length: 45 pic 0 pts, 190 mm

Then fW # Lp (0<p<1), f is of compact support and so it is easy to see
that for fixed t>0, there exists C=C(t, W )>0 such that

wr, p( f= , W, t)>C

and

& f $=8tW&Lp(R) � 0, = � 0+.

An Important Note on the Structure of This Paper. Sections 2 and 3,
establish some machinery required for the entire paper. This includes, in
particular, an extension of the Markov�Bernstein inequality (1.20). Many
of the proofs are technical and serve merely as tools for the proofs of our
main results. Thus, we suggest the reader skip these sections at first and
return to them at the end of the paper. In Section 4, we prove a theorem
required for the lower bound in Theorem 1.3, whereby we approximate
polynomials of degree n, n�1 by those of degree r&1, r�1. This technique,
although similar to that used in [8], is new for Erdo� s weights on R and
[&1, 1] and we believe it to be of independent interest. In Section 5 we
prove Theorem 1.3 and Corollary 1.4 and in Section 6 we prove Theorem
1.5 and Corollaries 1.6 and 1.7.

2. TECHNICAL LEMMAS

Lemma 2.1. Let W # E1 . Then

(a) Given A�0, the functions Q$(u) u&A and Q(u) u&A are quasi-
increasing and increasing respectively for large enough u.

(b) au is uniquely defined for u # (0, �). Furthermore, it is a strictly
increasing function of u.

(c) We have for u large enough and :>0

(i) auQ$(au)tuT(au)1�2,
(2.1)

(ii) Q(au)tuT(au)&1�2.

(iii) T(a:u)tT(au),

(iv) Q(a:u)tQ(au), (2.2)

(v) Q$(a:u)tQ$(au).

(d) If :>1 we have

}a:u

au
&1 }tT(au)&1 (2.3)
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from which it follows in particular that \;>0,

a;u

au
� 1, u � �. (2.4)

(e) For some Cj , j=1, 2, 3, and s�r�C3

\s
r+

C1T(r)

�
Q(s)
Q(r)

�\s
r+

C2 T(s)

. (2.5)

(f ) There exists =>0 such that

T(au)=O(u(2&=)). (2.6)

Moreover, \$>0

au=o(u$), u � �. (2.7)

(g) There exist Cj , j=1, 2, 3, such that for v�u�C3

\av

au+�C1 \v
u+

C2 �T(au)

, (2.8)

and

\av

v +<\
au

u +�C1 \v
u+

(C2 �T(au))&1

. (2.9)

In particular, given =>0, we have for v�u�C3

\av

au+�C1 \v
u+

=

, (2.10)

\av

v +<\
au

u +�C1 \v
u+

=&1

. (2.11)

Proof. Firstly, (a)�(c) [(i)�(iii)], (2.3)�(2.6) are part of Lemmas 2.1
and 2.2 in [2]. The rest of (2.2) follows from (2.1). Relation (2.7) will
follow using [(a)], as given A>0

C(au)A�Q(au)tuT(au)&1�2 O
(au)A

u
� 0, u � �.

358 S. B. DAMELIN



File: DISTL2 317811 . By:CV . Date:28:04:98 . Time:13:18 LOP8M. V8.B. Page 01:01
Codes: 1819 Signs: 663 . Length: 45 pic 0 pts, 190 mm

It remains to show (g). Now by (2.1) and then (2.5)

C1

v
u

�
vT(av)

&1�2

uT(au)&1�2t
Q(av)
Q(au)

�\av

au+
C2T(au)

,

which implies

\av

au+�C3 \v
u+

C4 �T(au)

.

So we have (2.8) and then (2.9)�(2.11) also follow. K

Lemma 2.2. Let W # E1 .

(a) Let t>0 be small enough. Then there exists u such that

t=
au

u
. (2.12)

(b) Let =>0. Then for u large enough

_ \au

u +=av(u) , (2.13)

where

u(1&=)�v(u)�u.

(c) Let a>1. There exists C1 , C2>0 such that for s�a�t�s and
s�C1

1�
_(t)
_(s)

�1+
C2

T(_(t))
. (2.14)

Further, for t small enough, we have for some =>0,

T(_(t))=O \_(t)
t +

2&=

. (2.15)

(d) Recall the definition (1.9) and let ; # (0, �). Then we have for
some C1>0 and \x # R

8 ;
t (x)�C1T(_(t))&;�2. (2.16)
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Further if m�n and n, m�C2 , then

sup
x # R

8an�n(x)

8am�m(x)
�C3 �log \2+

n
m+ , (2.17)

for some C3>0 independent of n, m, and x.

(e) Given a>1, there exists C1>0 independent of s, t, and x such that
for 0<s<C1 and s�a�t�s

8s(x)t8t(x), x # R. (2.18)

(f ) Uniformly for n�1 and x # R,

8an�n(x)t�} 1&
|x|
an }+T(an)&1�2. (2.19)

Further given ;>0, we have for some C1>0 and for all x # R,

8 ;
an�n(x)�C1T(an)&;�2. (2.20)

Proof. Inequality (2.16) follows from the definition of 8t . Relations
(2.12)�(2.14), and (2.17)�(2.19) are part of Lemmas 3.1 and 7.1 in [2].
Inequality (2.20) follows from (2.19). Finally to prove (2.15), we may by
(2.12) put t=au�u for some u�uo . Then using Lemma 2.1(b), (2.13), and
(2.6) gives for some =>0

T(_(t))�T(au)=O(u2&=)=O \_(t)
t +

2&=

. K

We have an infinite-finite range inequality:

Lemma 2.3. Let W # E1 , 0<p�� and s>1. Then for some C1 , C2 ,
C3>0 and \P # Pn , n�1,

(a) &PW&Lp(R)�C1 &PW&Lp (&asn , asn) , (2.21)

(b) &PW&Lp( |x|�asn)�C2 exp[&C3nT(an)&1�2] &PW&Lp(&asn , asn) .

(2.22)

Proof. This is Lemma 2.3 in [2]. K

Note that (2.6) shows that for large n,

nT(an)&1�2�nC3, some C3>0.
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Lemma 2.4. Let W # E1 , t # (0, t0) and ;>0. Put for u�u0

t=
;au

u

and set

n :=n(t)=inf {k:
ak

k
�

;au

u = . (2.23)

Then

(a)
an

n
�

;au

u
<

an&1

n&1
, (2.24)

(b)
an

n
�

;au

u
<2

an

n
, (2.25)

(c) utn. (2.26)

Proof. Inequality (2.24) follows from the definition of n. Inequality
(2.25) follows from (2.24) as

an&1<an .

To show (2.26), we first show that _:>0 such that

u�:n. (2.27)

Suppose first that u�n. Using (2.24) and Lemma 2.1(g), there exists
C>0 such that

1
;

�
au

u<
an

n
�C \u

n+
&1�2

which implies (2.27). Suppose u�n. Then (2.27) follows with :=1. So it
suffices to show that _C1>0 such that

u�C1n.

If n&1�u by (2.24) and Lemma 2.1(g), there exists C2>0 such that

;�
an&1

n&1<
au

u
�C2 \n&1

u +
&1�2
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which implies

u�C3n

for some C3>0. Further, if u�n&1 we are done. K

We now present two lemmas on differences.

Lemma 2.5. Let W # E1 .

(a) Recall the difference operator 2r
h defined by (1.8). Then we have

\x # R, \P # Pr&1 , r�1, ; # R, and t>0

(i) 2r
h8 t

; (x)P(x)#0,
(2.28)

(ii) r!(h8;
t (x))r=2r

h8t
; (x)x

r.

(b) Let L, s>0. Then uniformly for u�1 and |x|, | y|�aus such that

|x& y|�L
au

u �1&\ | y|
aus+ or |x& y|�L

au

u
T(au)&1�2,

we have

W(x)tW( y). (2.29)

(c) Let L, M>0. For t # (0, t0), |x|, | y|�_(Mt) such that

|x& y|�Lt8t(x)

we have (2.29) and

8t(x)t8t( y). (2.30)

Proof. This is Lemma 3.2 in [2].

Lemma 2.6. Let W # E1 , 0<$<1; L, M>0 and 0<p��.

(a) Let s # (0, 1) and [a, b] be contained in one of the ranges

|x|�_(t) _1&\ s
2$_(t)+

2

& (2.31)

or

|x|�_(t) _1+\ s
2$_(t)+

2

& . (2.32)
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Then

|
b

a
| f (x\s8t(x))| dx�

2
1&$ |

b�

a�
| f (x)| dx, (2.33)

where

{a�
b� = :={ inf

sup= [x\s8t(x) : x # [a, b]]. (2.34)

(b) Let r�1, t # (0, 1�M ), h # (0, Mt), and [a, b] be as above with
s=Mrt. Define a� and b� by (2.34) with s=Mrt. Assume moreover that

[a, b]�[&_(Lt), _(Lt)]. (2.35)

Then for some C{C(a, b, t, g)

&2r
h8t (x)(g, x, R) W(x)&Lp [a, b]�C inf

P # Pr&1

&W(g&P)&Lp[a� , b� ]

�C &Wg&Lp[a� , b� ] . (2.36)

Proof. (a) Define }=\1 and u(x) :=x+}s8t(x).

We shall assume that [a, b] is contained in the range (2.31) and also
a�0. The case where a<0 is similar, as is the case when [a, b] is
contained in the range (2.32). Then for x # [a, b],

u$(x)=1+
}s

2 - 1&(x�_(t)) \&
1

_(t)+�1&$,

by (2.31). Hence u is increasing in [a, b] and writing v :=u(x) gives

|
b

a
| f (x\s8t(x))| dx=|

b

a
| f (u(x))| dx

=|
u(b)

u(a)
| f (v)|

dx
du

dv, v=u(x)

�
1

1&$ |
u(b)

u(a)
| f (v)| dv

=
1

1&$ |
b�

a�
| f (x)| dx

in this case. The extra 2 in (2.33) takes care of having to split [a, b] into
two intervals if a<0<b.
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(b) Now recall that we have

W(x) 2r
h8t (x) (g(x))= :

r

i=0
\r

i+ (&1) i W(x) g \x+\r
2

&i+ h8t(x)+ .

Also (2.29) gives

W(x)tW \x+\r
2

&i+ h8t(x)+
uniformly in i and for |x|�_(Lt) and h�Mt. Thus we obtain from part
[(a)]

&W(x)2r
h8t(x)(g(x))&Lp[a, b]�C sup

0�i�r
|

b

a
| gW| p \x+\ r

2
&i+ h8t(x)+ dx

�
2C

1&$ |
b�

a�
| gW| p (x) dx.

Note that for 0�i�r, (2.31) with s=Mrt gives

|x|�_(t) \1&_ Mrt
2$_(t)&

2

+�_(t) \1&_ ih
4$_(t)&

2

+
so the range restrictions of (a) are satisfied.

Finally note that by (2.28) for P # Pr&1 ,

2r
h8t(x)(P, x, R)#0.

Hence

&2r
h8t(x)(g, x, R) W(x)&Lp[a, b]=&2r

h8t(x)(g&P, x, R) W(x)&Lp[a, b]

�C &(g&P)W&Lp[a� , b� ] .

It remains to take the infimum over P. K

3. A MARKOV�BERNSTEIN INEQUALITY

In this section, we prove an extension of the Markov�Bernstein
inequality (1.20).
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Theorem 3.1. Let W # E1 and assume (1.20). Let 0<p�� and define
for n�1,

9n(x) :=\1&\ x
an+

2

+
2

+T(an)&2, x # R. (3.1)

Then for n�C1 , 0�l�n, and \P # Pn we have

&P(l+1)9 (l+1)�4
n W&Lp(R)�C2 { n

an
+

l
an

T(an)1�2= &P(l )9 l�4
n W&Lp(R) (3.2)

�C3

n
an

[l+1] &P(l )9 l�4
n W&Lp(R) . (3.3)

Here Cj{Cj (n, l, P), j=2, 3.

We remark that (3.2) and (3.3) will hold with constants depending on l
if we replace 9 1�4

n by 8an�n .
More precisely,

&P(l+1)8l+1
an�n W&Lp(R)�C l

4 { n
an

+
l

an
T(an)1�2= &P(l )8l

an�nW&Lp(R) (3.4)

�C l
5

n
an

[l+1] &P(l )8l
an�nW&Lp(R) , (3.5)

where Cj{Cj (n, P), j=4, 5.
We need several lemmas.

Lemma 3.2. Let s>1 and n�C1 . Then there exist polynomials R of
degree o(n) such that uniformly for |x|�asn

R(x)t8an�n(x)t9 1�4
n (x) (3.6)

and

|R$(x)�R(x)|�
C1

an
9 &1�2

n (x). (3.7)

Proof. Let

u(x) :=(1&x2)&3�4, x # [&1, 1]

be the ultraspherical weight on (&1, 1) and let *n(u, x) be the Christoffel
function corresponding to u satisfying

*&1
n (u, x) # P2n&2.
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Then it is known [25, p. 36], that given A>0 we have uniformly in n and
|x|�1&(A�n2)

*n(u, x)t
1
n

(1&x2)&1�4 (3.8)

and

|*$n(u, x)|�
C1

n
(1&x2)&5�4. (3.9)

Now choose m :=m(n) = the largest integer �T(an)&1�2 and put

R(x) :=
1

m2 *&2
m \u,

x
a2sn+ , x # [&asn , asn].

Then by (2.6), R has degree o(n) and by (2.3), (2.6), (2.19), (3.1), and (3.8)
we have uniformly for |x|�asn ,

R(x)t8an�n
(x)t9 1�4

n (x).

To prove (3.7), we observe much as in [22, p. 228] that

}*&1
n \u,

x
a2sn+

$}= |*$n(u, x�a2sn )|
a2sn*2

n(u, x�a2sn )
, (3.10)

so that by (3.8), (3.9), and the definition of R we have uniformly for
|x|�asn ,

|R$(x)�R(x)|�
C2

an \1&\ x
a2sn+

2

+
&1

�
C3

an
9n(x)&1�2. K

Our next lemma is an infinite-finite range inequality:

Lemma 3.3. Let W # E1 . Let 0<p��, s>1, and 9n be as in (3.1).
Then for n�C1 , \P # Pn , and 0�l�n we have

&PW9 l�4
n &Lp(R)�C1 &PW9 l�4

n &Lp( |x|�a3sn) . (3.11)

Moreover,

&PW9 l�4
n &Lp( |x|�a3sn)�C2 exp[&C3nC4] &PW9 l�4

n &Lp( |x|�a3sn) . (3.12)

Here, Cj{Cj (n, P, l ), j=1, 2.
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We recall that (2.6) shows that for large n,

nT(an)&1�2�nC3. (3.13)

Proof. First note that by (2.20) and the definition of 9n , given ;>0 we
have

9 ;�4
n (x)�T(an)&;�2, x # R. (3.14)

Now write l=4j+k, 0�k<3. Then for some 0<:�3 and C1 depending
on k we have

&PW9 l�4
n &Lp( |x|�a3sn)=&PW9 j

n9 k�4
n &Lp( |x|�a3sn)

�C1 &PW9 j
n x:&Lp( |x|�a3sn) . (3.15)

Now Px:9 j
n is a polynomial of degree �n+l+3�3n so by (2.22), we

may continue (3.15) as

�C2 exp[&C3 nT(an)&1�2] &PWx:9 j
n&Lp ( |x|�a3sn)

�C4 exp[&C3 nT(an)&1�2] a:
nT(an)k�2 &PW9 j+k�4

n &Lp( |x|�a3sn) (by (3.14))

�C5 exp[&C6 nT(an)&1�2] &PW9 l�4
n &Lp( |x|�a3sn)

by (2.7) and (3.13). K

We can now give:

Proof of Theorem 3.1. We prove (3.2). Then (3.3) will follow by (2.6).
Inequalities (3.4) and (3.5) will follow as

9 1�4
n (x)t8an�n(x), x # R.

Put s>1 and write l=4j+k, 0�k�3. Put Q :=P(l ). Then

J :=&P(l+1)W9 (l+1)�4
n &Lp( |x|�a3sn)=&Q$W9 (l+1)�4

n &Lp( |x|�a3sn)

=&Q$W9 j+(k+1)�4
n &Lp( |x|�a3sn) .

Choose by Lemma 3.2, R of degree o(n) such that

R(x)t9 1�4
n (x)

and

|R$(x)�R(x)|�
C1

an
9 &1�2

n (x)

uniformly for |x|�a3sn .
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Then continue this estimate as

J�C2&Q$W9 j
n Rk 9 1�4

n &Lp( |x|�a3sn) ,

where C2 depends only on k. This in turn can be continued as

�C2 &(Q9 j
nRk)$ 9 1�4

n W&Lp( |x|�a3sn)+C2 &(9 j
n)$ RkQ9 1�4

n W&Lp( |x|�a3sn)

+C2 &9 j
n(Rk)$ Q9 1�4

n W&Lp( |x|�a3sn)

=T1+T2+T3 .

We begin with the estimation of T1 .
Note that Q9 j

nRk is a polynomial of degree �n+l+o(n)�3n. Thus,
we can write

T1�C3

n
an

&Q9 j
nRkW&Lp(R) (by (1.20))

�C4

n
an

&Q9 j
n RkW&Lp( |x|�a3sn) (by (2.21))

�C5

n
an

&Q9 j+k�4
n W&Lp( |x|�a3sn)

�C5

n
an

&P(l )9 l�4
n W&Lp(R) . (3.16)

Next we estimate T2 .
Note that for |x|�asn and by straightforward differentiation, (2.3) gives

|(9 j
n)$| (x)�C69n(x) j&(1�2) j

an
.

Thus

T2�C7

j
an

&P (l )
n 9 j&(1�2)

n 9 k�4+1�4
n W&Lp( |x|�a3sn)

�C7

j
an

&P (l )
n 9 l�4&1�4

n W&Lp( |x|�a3sn)

�C8

lT(an)1�2

an
&P(l )

n 9 l�4
n W&Lp(R) (3.17)

by (3.14).
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It remains to estimate T3 .
Write

T3�C9 k &9 j
n Rk&1R$Q9 1�4

n W&Lp( |x|�a3sn)

�
C10 k

an
&9 j

n9 k&1�4
n QW&Lp( |x|�a3sn) by (3.7)

�C10

lT(an)1�2

an
&P (l)

n 9 l�4
n W&Lp(R) (3.18)

as in the estimation of T2 .
Combining (3.16), (3.17), and (3.18) gives

J�C11 { n
an

+
l

an
T(an)1�2= &P(l )W9 l�4

n &Lp(R) , (3.19)

where C11{C11(n, P, l ).
Finally by (3.11), (3.19) becomes

&P(l+1)W9 l+1�4
n &Lp(R)�C12 { n

an
+

l
an

T(an)1�2= &P(l )W9 l�4
n &Lp(R)

as required where C12{C12(n, P, l ). K

4. APPROXIMATION OF POLYNOMIALS OF DEGREE �n
BY THOSE OF DEGREE �r&1

In this section, we obtain a crucial inequality introduced in a related
context in [8], in order to obtain an upper bound for our modulus in
terms of our realization-functional. The main idea is to approximate poly-
nomials of degree �n by polynomials of degree �r&1. Here n�n0 and
r�1.

We prove:

Theorem 4.1. Let W # E1 and assume (1.20). Let r�1, L>0, 0<p��,
Pn # Pn , and n�C. Set

P(x) :=Pn(x)&|
x

aLn
|

ur&1

aLn

} } } |
u1

aLn

P (r)
n (uo) duo } } } dur&1 # Pr&1. (4.1)

Then, _C1>0, C1{C1(n, Pn , P) such that

&W(Pn&P)&Lp[aLn , �)�C1 \an

n +
r

&WP (r)
n 8r

an�n &Lp(R) . (4.2)
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We break the proof down into several steps. We begin with:

Lemma 4.2. Let W # E1 , 1�p��. Then for n�C and \g # Lp[aLn , �),
_C1>0, C1{C1(g, n) such that

"W(x) |
x

aLn

g(u) du"Lp[aLn , �)

�
an

nT(an)1�2 &gW&Lp [aLn , �) . (4.3)

Proof. We notice that

W(x)1�2 |
x

t
W(u)&1�2 Q$(u) du=2 _1&_W(x)

W(t)&
1�2

&�2 (4.4)

as t�x.
Next, notice that for u�aLn , and n large enough, we have by Lemma 2.1

Q$(u)�CQ$(aLn)t
nT(an)1�2

an
, (4.5)

so that for x�aLn

an

nT(an)1�2 W(x)1�2 |
x

aLn

| gW(u)| Q$(u)W&1�2(u) du

�C1W(x)1�2 |
x

aLn

| gW(u)1�2 | du�W(x) } |
x

aLn

g(u) du } . (4.6)

Now recalling Jensen's Inequality for integrals

}| f d+ }
p

�\| | f | p d++\| d++
p&1

valid for + measurable functions f and non-negative measures +, gives:

Case 1. p=�. Here (4.6) gives for x�aLn

W(x) }|
x

aLn

g(u) du }� an

nT(an)1�2 W(x)1�2 &gW&L�[aLn, �) |
x

aLn

Q$(u)W&1�2(u) du

�C2

an

nT(an)1�2 &gW&L� [aLn , �) (by (4.4)).
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Case 2. 1�p<�. Here

"W(x) |
x

aLn

g(u) du"Lp[aLn , �)

�
an

nT(an)1�2 _|
�

aLn

[W(x)1�2 |
x

aLn

| gW(u)| Q$(u) W &1�2(u) du&
p

dx&
1�p

�C3

an

nT(an)1�2 _|
�

aLn

2 p&1W(x)1�2 |
x

aLn

| gW(u)| p Q$(u) W&1�2(u) du dx&
1�p

by Jensen's Inequality, with d+=W(x)1�2 Q$(u) W(u)&1�2 on [aLn , x] and
� d+�2 (see (4.4)).

Then

|
�

aLn

W(x)1�2 |
x

aLn

| gW(u)| p Q$(u) W&1�2(u) du dx

=|
�

aLn

| gWu| p _|
�

u
W(x)1�2 Q$(u) dx& W&1�2(u) du

�C4 |
�

aLn

| gW(u)| p _|
�

u
W(x)1�2 Q$(x) dx& W&1�2(u) du (as x>u)

�C5 &gW& p
Lp [aLn, �) . K

We are now in the position to give:

Proof of Theorem 4.1 for 1�p��. We will repeatedly make use of (2.20):

8an�n(x)�CT(an)&1�2, \x # R. (4.7)

Firstly, if r=1, Lemma 4.2 with g=P$n gives

"W(x) |
x

aLn

P$n(uo) duo"Lp [aLn, �)

�C1

an

nT(an)1�2 &P$n W&Lp(R)

�C2

an

n
&P$n 8an�n(x)W&Lp(R) (by (4.7)).

Now apply (4.1). If r=2, we apply Lemma 4.2 with

g(u1)=|
u1

anL

P(2)(uo) duo

371CONVERSE AND SMOOTHNESS THEOREMS



File: DISTL2 317824 . By:CV . Date:28:04:98 . Time:13:18 LOP8M. V8.B. Page 01:01
Codes: 2712 Signs: 734 . Length: 45 pic 0 pts, 190 mm

to give

"W(x) |
x

aLn
|

u1

aLn

P (2)
n (uo) duo du1"Lp[aLn, �)

="W(x) |
x

aLn

g(u1) du1"Lp[aLn, �)

�C3

an

nT(an)1�2 &gW&Lp[aLn, �)

=C3

an

nT(an)1�2 "W |
u1

anL

P (2)
n (uo) duo"Lp[aLn, �)

�C4 \ an

nT(an)1�2+
2

&P (2)
n W&Lp(R)

�C5 \an

n +
2

&P (2)
n 82

an�n(x)W&Lp(R) .

Applying now (4.1) and an induction argument on r gives the result. K

We now treat the more complicated case, 0<p<1. For this case we
need two lemmas.

Lemma 4.3. Let W # E1 and assume (1.20). Let 0<p<1, r�1, Rn # Pn ,
R # Pr&1 , and n�C. Set for x # R, and L>0

gn(x) :=(Rn&R)(x)

and

Jn(x) :="| g$nW(u)| 1&p \W(x)
W(u)+

1�2

"
p�(1& p)

L�[aLn , x]

. (4.8)

Then

|
�

aLn

Jn(x) dx�C1 _ :
r&1

j=1
\ an

nT(an)1�2+
( j&1)p

&W(R ( j )
n &R( j ))& p

L�[aLn , �)

+\ an

nT(an)1�2+
(r&1)p

&WR (r)
n & p

L� (R)& . (4.9)

Here C1{C1(n, Rn, R).

Proof. Write

Jn(x)=" | g$nW(u)| p \W(x)
W(u)+

p�2(1& p)

"L� [aLn , x]
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and set

{ :=
$an

nT(an)1�2 ,

where $>0 is chosen small enough so that for n�1 and \S # Pn ,

&S$W&Lp(R)�(2$&1)
nT(an)1�2

an
&SW&Lp(R) . (4.10)

(See (1.20) and (2.20).)
Now given x�aLn , we set

ko :=ko(x)=max[ko : x&(k+1) {�aLn]

and write

Jn(x)�I1+I2 ,

where

I1 := max
0�k�ko " | g$nW| p (u) \W(x)

W(u)+
p�2(1& p)

"L� [x&(k+1) {, x&k{]

(4.11)

and

I2 :="| g$n W(u)| p \W(x)
W(u)+

p�2(1& p)

"L� [aLn , x&(ko+1) {]

. (4.12)

First we observe that for u # [x&(k+1) {, x&k{]

W(x)
W(u)

�exp(Q(x&k{)&Q(x)).

Further, as x&k{�aLn>0

Q(x)&Q(x&k{)�C1k{Q$(x&k{)�C2 k{Q$(aLn)�C3

nT(an)1�2 $an k
annT(an)1�2

=C3k$

by (2.1) of Lemma 2.1. So

\W(x)
W(u)+

p�2(1& p)

�:k, u # [x&(k+1) {, x&k{],
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where : # (0, 1) is independent of x, u, k. Thus we may write

I1+I2� max
0�k�ko

:k &g$nW& p
L� [x&(k+1) {, x&k{]

+:ko &g$nW& p
L� [aLn , x&(ko+1) {]

� :
ko(x)

k=0

:k &g$nW& p
L� [x&(k+1) {, x&k{]+:ko &g$nW& p

L�[aLn , x&(ko+1) {] .

Then

|
�

aLn

Jn(x) dx= :
�

m=0
|

aLn+(m+1) {

aLn+m{
Jn(x) dx

� :
�

m=0
|

aLn+(m+1) {

aLn+m{ _ :
ko(x)

k=0

:k &g$nW& p
L� [x&(k+1) {, x&k{]

+:ko &g$nW& p
L�[aLn , x&(ko+1) {] dx& .

We observe that

|
aLn+(m+1) {

aLn+m{
&g$nW& p

L� [x&(k+1) {, x&k{] dx

=|
aLn+(m&k) {

aLn+(m&k&1) {
&g$nW& p

L� [x, x+{] dx

and since

x # [aLn+(m&k&1) {, aLn+(m&k) {] O m�ko�m&1,

we have

|
�

aLn

Jn(x) dx� :
�

m=0
_ :

m&1

k=0
|

aLn+(m&k) {

aLn+(m&k&1) {
:k &g$nW& p

L� [x, x+{] dx

+2:m&1 |
aLn+{

aLn

&g$nW& p
L� [aLn , x] dx&

� :
�

s=0
_|

aLn+(s+1) {

aLn+s{
&g$nW& p

L� [x, x+{] dx \ :

s=m&k&1
(m, k)

:k+&
+2 |

aLn+{

aLn

&g$nW& p
L� [aLn , x]

1
:(1&:)

dx

�C4 [I3+I4].
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Here

I3 := :
�

s=0
|

aLn+(s+1) {

aLn+s{
&g$nW& p

L� [x, x+{] dx (4.13)

and

I4 :=|
aLn+{

aLn

&g$nW& p
L� [aLn , x] dx (4.14)

We begin by estimating I3 . Observe that g$n is a polynomial of degree
�n&1 for u # [x, x+{], so expanding it in a Taylor series about x gives

| g$n(u)| p= } :
n

j=1

g ( j )
n (x)(u&x) j&1

( j&1)! }
p

� :
n

j=1

| g ( j )
n (x)| p {( j&1)p

(by the inequality, (a+b):�a:+b:, 0<:<1, a, b # R)

� :
r&1

j=1

|R( j )
n (x)&R( j )(x)| p {( j&1)p+ :

n

j=r

|R ( j )
n (x)| p {( j&1)p.

Thus using

W(u)�W(x), u # [x, x+{], (4.15)

the definition of {, and (4.10) gives

I3�C5 _ :
r&1

j=1

&(R ( j )
n &R( j ))W& p

Lp[aLn , �) {( j&1)p

+{(r&1)p :
n

j=r

&R ( j )
n W& p

Lp [aLn , �) {( j&r)p&
�C6 _ :

r&1

j=1
\ an

nT(an)1�2+
( j&1)p

&(R ( j )
n &R( j ))W& p

Lp [aLn , �)

+{(r&1)p :
n

j=r \
{nT(an)1�2

2$an +
( j&r)p

&R (r)
n W& p

Lp (R)&
�C7 _ :

r&1

j=1
\ an

nT(an)1�2+
( j&1)p

&(R ( j )
n &R( j))W&p

Lp[aLn , �)

+\ an

nT(an)1�2+
(r&1)p

&R (r)
n W& p

Lp (R)& . (4.16)
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To estimate I4 we proceed in a similar way to that of I3 , except that we
use (2.29) instead of (4.15), which we may do in view of the definition of {,
(2.3), and (2.6). Combining our estimates for I3 and I4 gives the lemma. K

Lemma 4.4. Let W # E1 and assume (1.20). Let 0<p<1, r�1, L>0,
Rn # Pn , R # Pr&1 satisfying,

(Rn&R)(aLn)=0.

Then for n�C there exists C1{C1(n, Rn , R) such that

&W(Rn&R)&Lp[aLn , �)

�C1 __\ an

nT(an)1�2+ &W(R$n&R$)& p
Lp [aLn , �)&

__ :
r&1

j=1
\ an

nT(an)1�2+
( j&1)(1& p)

&(R ( j )
n &R( j ))W&1&p

Lp [aLn , �)&
+\ an

nT(an)1�2+
(r&1)(1& p)

&R (r)
n W&1&p

Lp (R)& . (4.17)

Proof. Set

gn(x) :=(Rn&R)(x)

satisfying gn(aLn)=0 and write

gn(x)=|
x

aLn

g$n(u) du.

Then

2=&W(Rn&R)&Lp [aLn , �)=&Wgn&Lp [aLn, �)

=_|
�

aLn
}|

x

aLn

g$nW(u)
W(x)
W(u)

du }
p

dx&
1�p

�_|
�

aLn
" | g$n W(u)| 1&p \W(x)

W(u)+
1�2

"
p

L�[aLn , �)

_\|
x

aLn

| g$nW(u)| p \W(x)
W(u)+

1�2

du+
p

dx&
1�p

. (4.18)

Now apply Ho� lder's Inequality with r=1�1&p, _=1�p satisfying r&1+_&1

=1 to give

2�I1I2 ,

376 S. B. DAMELIN



File: DISTL2 317829 . By:CV . Date:28:04:98 . Time:13:19 LOP8M. V8.B. Page 01:01
Codes: 2371 Signs: 645 . Length: 45 pic 0 pts, 190 mm

where

I1 :=\|
�

aLn
"| g$nW(u)| 1&p \W(x)

W(u)+
1�2

dx"
p�1&p

L�[aLn, �)+
(1&p)�p

(4.19)

and

I2 :=\|
�

aLn
|

x

aLn

| g$n W(u)| p \W(x)
W(u)+

1�2

du dx+ . (4.20)

Now by (4.8) we may write

I1=\|
�

aLn

Jn(x) dx+
(1&p)�p

�C _ :
r&1

j=1
\ an

nT(an)1�2+
( j&1)(1& p)

_&W(R ( j )
n &R( j ))&1&p

Lp[aLn, �)

+\ an

nT(an)1�2+
(r&1)(1& p)

&WR (r)
n &1&p

Lp(R)& (4.21)

(by Lemma 4.3).
Also

I2=|
�

aLn

| g$nW(u)| p |
�

u \W(x)
W(u)+

1�2

dx du.

Now if x�u�aLn , Lemma 2.1 gives

Q$(x)�C1Q$(aLn)�C2

nT(an)1�2

an

so that

I2�C3

an

nT(an)1�2 |
�

aLn

| g$nW(u)| p _W(u)&1�2 |
�

u
W(x)1�2 Q$(x) dx& du

�C4

an

nT(an)1�2 |
�

aLn

| g$nW(u)| p du.

This gives

I2�C4

an

nT(an)1�2 &(R$n&R$)W& p
Lp [aLn , �) . (4.22)

Combining our estimates for I1 and I2 gives the result. K
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We are now in the position to give:

Proof of Theorem 4.1 for 0<p<1. Let Pn # Pn and P # Pr&1 be given
by (4.1). We first note that if 0�l<r,

(P (l )
n &P(l ))(aLn)=0.

Thus applying (4.17) to P (l )
n with r in (4.17) replaced by r&l gives

&W(P (l )
n &P(l))&Lp [aLn , �)

�C1 __ an

nT(an)1�2 &W(P (l+1)
n &P(l+1))& p

Lp[aLn , �)&
__ :

r&1

j=l+1
\ an

nT(an)1�2+
( j&l&1)(1& p)

&W(P ( j )
n &P( j ))&1&p

Lp[aLn, �)&
+\ an

nT(an)1�2+
(r&l&1)(1& p)

&WP (r)
n &1& p

Lp(R)& . (4.23)

We show that for k=r&1, r&2, ..., 0

&W(P (k)
n &P(k))&Lp [aLn , �)�C3 \ an

nT(an)1�2+
r&k

&WP (r)
n &Lp (R) . (4.24)

Firstly, if k=r&1, (4.23) with l=r&1 gives

&W(P (r&1)
n &P(r&1))&Lp [aLn , �)�C4 \ an

nT(an)1�2+ &WP (r)
n &Lp (R) .

Assume now that (4.24) holds for r&1, ..., k+1. We prove (4.24) for k.
Substituting (4.24) with r&1, ..., k+1 into (4.23) with l=k gives

&W(P (k)
n &P(k))&Lp[aLn , �)

�C5 _ an

nT(an)1�2 \ an

nT(an)1�2+
(r&k&1)p

&WP (r)
n & p

Lp (R)

__ :
r&1

j=k+1
\ an

nT(an)1�2+
( j&k&1)(1& p)

\ an

nT(an)1�2+
(r& j )(1& p)

&
_&WP (r)

n &1&p
Lp (R)+\ an

nT(an)1�2+
(r&k&1)(1& p)

&WP (r)
n &1& p

Lp(R)&
�C6 \ an

nT(an)1�2+
r&k

&WP (r)
n &1& p

Lp (R) .
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Thus (4.24) holds for all k. In particular, we have

&W(Pn&P)&Lp[aLn , �)�C7 \ an

nT(an)1�2+
r

&WP (r)
n &Lp (R)

�C8 \an

n +
r

&WP (r)
n 8r

an�n(x)&Lp (R) . K

5. EQUIVALENCE OF MODULUS AND
REALIZATION FUNCTIONAL

In this section we prove Theorem 1.3 which establishes the fundamental
equivalence of our modulus of continuity and its corresponding realization-
functional. We also deduce Corollary 1.4. Throughout for 0<p�� we set

q :=min[1, p].

We begin by quickly recalling the definitions of our moduli and realization
functional. See (1.11), (1.12), and (1.17). Let r�1, 0<t�C, and let
n=n(t) be determined by (1.18). Then we have

(1) wr, p( f, W, t) := sup
0<h�t

&W(2r
h8t (x)( f ))&Lp ( |x|�_(2t))

+ inf
R of deg �r&1

&( f &R)W&Lp ( |x|�_(4t)) (5.1)

(2) w� r, p( f, W, t) :=_1
t |

t

0
&W(2r

h8t(x)( f ))& p
Lp ( |x|�_(2t)) dh&

1�p

+ inf
R of deg �r&1

&( f &R)W&Lp ( |x|�_(4t)) , (5.2)

where we set w� =w for p=� and

(3) Kr, p( f, W, tr) := inf
P # Pn

[&( f &P)W&Lp (R)+tr &P(r)8r
t(x)W&Lp (R)].

(5.3)

We begin with our lower bound.

Lemma 5.1. Let W # E1 , assume (1.20), and let L>0 be fixed. Let r�1,
0<p��, and 0<t<C. Then there exists C1{C1( f, t) such that

wr, p( f, W, Lt)�C1Kr, p( f, W, tr). (5.4)
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Proof. Let q=min[1, p]. Then by (2.12), there exists u such that
4Lt=au�u. Now let n=n(t) be determined by (1.18) and recall it has the
form

n=inf {k:
ak

k
�t= .

Thus by (2.25) and (2.18) we have

an

2n
�

t
2

<
an

n
(5.5a)

and

8t(x)t8an�n(x)t8Lt (x) \x # R, (5.5b)

where the constants in the t relation are independent of t and x. Also by
(2.13) and (2.26), _;>0 such that

_(4Lt)=_ \au

u +�au�2�a;n . (5.6)

Choose P # Pn such that

&( f &P)W&Lp (R)+tr &P(r)8r
t W&Lp (R)�2Kr, p( f, W, tr). (5.7)

We show that

sup
0<h�tL

&W(2r
h8tL (x)( f ))&Lp ( |x|�_(2Lt))�C6 Kr, p( f, W, tr) (5.8)

and

inf
R of deg �r&1

&( f &R)W&Lp ( |x|�_(4Lt))�C2Kr, p( f, W, tr). (5.9)

This then gives (5.4) using the definition (5.1).
We begin with:

Proof of (5.9). We appeal to Theorem 4.1 and choose for our given
P, S # Pr&1 as in (4.1), so that (4.2) holds. Next we recall Lemma 3.1
from [8]. Let W be an even weight. Then for f satisfying fW # Lp(R) and
for !>0,
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inf
R of deg �r&1

&( f &R)W&Lp( |x|�!)�24�q&3 _ inf
R of deg �r&1

&( f &R)W&Lp(x�!)

+ inf
R of deg �r&1

&( f &R)W&Lp(x�&!)& .

We apply the above with ! :=_(4Lt). In particular, we estimate

inf
R of deg �r&1

&( f &R)W&q
Lp (x�_(4Lt)) .

The other term can be handled similarly. Thus

inf
R of deg �r&1

&( f &R)W&q
Lp(x�_(4Lt))

�&( f &S)W&q
Lp(x�_(4Lt))

�&( f &P)W&q
Lp(x�_(4Lt))+&(P&S)W&q

Lp(x�_(4Lt))

�C3(Kr, p( f, W, tr))q+&(P&S)W&q
Lp (x�a;n) (by (5.6) and (5.7))

�C3(Kr, p( f, W, tr))q+C4 tr &P (r)8r
t W&q

Lp(R)

(by (4.2), (5.5a), and (5.5b))

�C5(Kr, p( f, W, tr))q.

Hence (5.9).

Next we proceed with:

Proof of (5.8). Let 0<h�Lt and write

&W(2r
h8tL(x)( f ))&q

Lp( |x|�_(2Lt))�&W(2r
h8tL(x)( f &P))&q

Lp( |x|�_(2Lt))

+&W(2r
h8Lt(x)(P))&q

Lp( |x|�_(2Lt))

=I1+I2 .

We first deal with the estimation of I1 . Note that given A>0,

|x|�_(2Lt)

implies

1&
|x|

_(tL)
�1&

_(2Lt)
_(tL)

�
C7

T(_(Lt))
�\ At

_(tL)+
2
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by (2.14) and (2.15) provided t is small enough. Thus (2.31) and (2.35) are
satisfied so that by (2.36),

I1�C6 &W( f &P)&q
Lp (R)�C7Kr, p( f, W, tr)q (5.10)

by (5.7).
To deal with the estimation of I2 we observe first much as in [8] that for

S(w) := :
r&1

l=0

P(l )(x)(w&x)l

l !
# Pr&1

we have by (2.28) that 2r
h8Lt(x)S#0.

Thus expanding P(x+((r�2)&k)h8t(x)), 0�k�r, in a power series
about x gives

2r
h8tL(x)P(x)= :

r

k=0
\ r

k+ (&1)k P \x+\r
2

&k+ h8tL(x)+
= :

r

k=0
\ r

k+ (&1)k _ :
r&1

l=0

+ :
n

l=r&
[((r�2)&k) h8tL(x)]l P(l)(x)

l !

= :
r

k=0 \
r
k+ (&1)k :

n

l=r

[((r�2)&k) h8tL(x)] l P(l )(x)
l !

,

so that

I2�C8 :
r

k=0
\ r

kq+ :
n

l=r _
((r�2)h) lq

l!q & &P(l )8l
tL W&q

Lp( |x|�_(2Lt))

�C92rqhrq :
n

l=r _
((r�2)h)(l&r)q

l !q & &P(l )8l
tL W&q

Lp( |x|�_(2Lt)) . (5.11)

Now by repeated applications of Theorem 3.1, we have by using (5.5),

&P(l )8l
tLW&Lp (R)

�C r
10 &P(r)8r

tLW&Lp (R) C l&r
11 `

l&1

j=r \
n
an

+
j

an
T(an)1�2+ , (5.12)

where Cj , j=10, 11 are independent of n, x, l, L, and h. Now we observe
using (2.6) that given =>0, we have for n large enough and r�l�n

`
l&1

j=r \
n
an

+
j

an
T(an)1�2+�C12=l&r \ n

an+
l&r

l !. (5.13)

Here it is important that C12 does not depend on l, n, h, or L and that C10

and C11 above are independent of =.
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We may now substitute (5.13) into (5.12) so that (5.11) becomes

I2�C13hrq &P(r)8r
t W&q

Lp (R) :
n

l=r _
((r�2) hC10C11=(n�an ))(l&r)q l !q

l!q &
�C14 trq &P(r)8r

t W&q :
�

k=0 _
1
2&

k

(if = is small enough),

�C15 trq &P(r)8r
t W&q�C16Kr, p( f, W, tr)q. (5.14)

Thus combining (5.10) and (5.14) and taking sup s over 0�h�Lt
gives (5.8). K

We proceed with the upper bound. This is more difficult than the lower
bound and does not follow as easily using, for example, the methods
of [8]. The crux is establishing the following quasi monotonicity type
property of w� .

Lemma 5.2. There exist Cj , j=1, 2, and 0<=0<1 such that if 0<*<=0

and 0<s, t<C1 with

*�
s
t
�=0 (5.15)

we have

w� r, p( f, W, s)�C2 w� r, p( f, W, t). (5.16)

It is important that the Cj , j=1, 2, and =0 do not depend on f, s, and t but
depend on *.

Remark. We remark that the above property is by no means obvious
as we recall that our modulus is not necessarily monotone increasing. We
prove it for p<� as the case p=� is much easier.

Proof. Let us write

w� r, p( f, W, s) p�
2 p

s _|
s

0
&W(2r

h8s(x)( f ))& p
Lp( |x|�_(3t))

+&W(2r
h8s(x)( f ))& p

Lp(_(3t)�|x|�_(2s)) dh&
+2 p inf

R of deg �r&1
&( f &R)W&p

Lp( |x|�_(4s))

=I1+I2 . (5.17)
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Firstly, by choice of s and t, s�t�1 so that

_(4s)�_(4t)

(recall _ is decreasing). Thus

I2�2 p inf
R of deg �r&1

&( f &R)W& p
Lp( |x|�_(4t))

�2 pw� p
r, p( f, W, t). (5.18)

Next we estimate I1 .
Write I1�I3+I4 , where

I3 :=
2 p

s |
s

0
&W(2r

h8s(x)( f ))& p
Lp( |x|�_(3t)) dh

and

I4 :=
2 p

s |
s

0
&W(2r

h8s(x)( f ))& p
Lp(_(3t)�|x|�_(2s)) dh.

We begin with the estimation of I4 . To this end we make use of Lemma 2.6.
Much as in the proof of Lemma 5.1, we have

I4�C1 inf
R of deg �r&1

&( f &R)W& p
Lp( |x|�_(4t))�C1w� r, p( f, W, t) p. (5.19)

Here we used that for small t,

inf[x&Mrs8s(x): _(3t)�x�_(2s)]=_(3t)&Mrs8s(_(3t))

�_(3t)&Ct8t(_(3t))

�_(3t)&CtT(_(t))&1�2

�_(3t)+o(1�T(_(t)))�_(4t)

by (2.3), (2.6), (2.14), (2.18), and as 8s is decreasing in [0, _(2s)].
It remains to estimate I3 .
As s and t are small enough, we can use (2.12), (2.19), and (2.30) to

obtain a large enough positive integer n such that an�nts and then divide
J :=[&_(3t), _(3t)] into O(1�s) intervals Jk such that

|Jk |�s8s(x), x # Jk .

Formally, we do this by choosing a partition

&_(3t)={0<{1 } } } <{n=_(3t)
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with

�{k+1
{k

8 &1
s (x) dx

�{n
{0

8&1
s (x) dx

=
1
n

, 0�k�n

and set

Jk=[{k , {k+1].

Then if |Jk | denotes the length of Jk we have

(1) 8s(x)t8s( y), x, y # Jk (5.20)

and

(2) W(x)tW( y), x, y # Jk .

Here the constants in the t relation are independent of x, y, s, k.
Then

I3=
2 p

s |
s

0
&W(2r

h8s (x)( f ))& p
Lp( |x|�_(3t)) dh

�C2 :
k

W p({k) |
Jk

1
s |

s

0
|2r

h8s(x)( f )| p dh dx

=C2 :
k

W p({k) |
Jk

1
s |

s8s(x)�8t(x)

0
|2r

u8t (x)( f )| p 8t(x)
8s(x)

du dx.

Now we may rewrite (2.17) for the given s and t as

sup
x # R

s8s(x)
t8t(x)

�C
s
t �log \2+

t
s+

for some C{C(s, t). It follows that

sup
x # R

s8s(x)
t8t(x)

�1

if

s�t�=0 ,

where =0 is independent of s and t. Then if *<=0 , we have for *�s�t�=0 ,

C3�
8s(x)
8t(x)

�C4 \x # R,
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where C3 and C4 are independent of s, t, and =0 . Then

I3�C5 :
k

W p({k) |
Jk

1
s |

t

0
|2r

u8t (x)( f )| p du dx

�C6

1
t |

t

0
&W(2r

h8t(x)( f ))& p
Lp( |x|�_(2t)) dh

�C6w� r, p( f, W, t) p. (5.21)

Combining our estimates (5.18), (5.19), and (5.21) gives the lemma. K

Lemma 5.3. Let W # E1 and assume (1.20). Let r�1 and 0<p��.
Then for 0<t<C1 , there exists C2 and C3 independent of f and t such that

Kr, p( f, W, tr)�C2 w� r, p( f, W, C3t). (5.22)

Proof. Put t�2=au �u for some u�u0 and let n=n(t) be determined by
(1.18), so that

n=inf {k:
ak

k
�

2au

u =
and

1
2

an

n
�

au

u
<

an

n
. (5.23)

Now it is easy to see that for large enough u and the given n,

t=2
au

u
=

an

n
*(n)C

for some *(n) # [ 4
5 , 1] and C>0 independent of n. We then apply (1.14),

and choose P # Pn such that

&( f &P)W&Lp (R)�C1w� r, p( f, W, C2 t) (5.24)

for some C1 and C2 independent of f and t.
We show that for some C3{C3( f, t),

tr &P(r)8r
t W&Lp(R)�C3w� r, p( f, W, C2 t) (5.25)
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for then by (5.24),

Kr, p( f, W, tr)= inf
R # Pn

[&( f &R)W&Lp (R)+tr &R(r)8r
t W&Lp(R)]

�&( f &P)W&Lp (R)+tr &P(r)8r
t W&Lp(R)

�(C1+C3) w� r, p( f, W, C2t).

Thus we show (5.25).
Now let $>0 be a small enough positive number and put s :=$t. It is

sufficient at this point of the proof to choose $ small enough so that by
Lemma 5.2,

w� r, p( f, W, s)�C4 w� r, p( f, W, C2t). (5.26)

Later, we will need to choose $ smaller still.
Let us recall much as in Lemma 5.1 that we have for 0< h�s

2r
h8s(x) P(x)= :

r

k=0
\ r

k+ (&1)k :
n

l=r

[((r�2)&k) h8s(x)] l P(l )(x)
l !

. (5.27)

Applying (5.27) to xr # Pr and using (2.28) gives

(r!)&1 2r
h8s(x)x

r=(h8s(x))r= :
r

k=0 \
r
k+ (&1)k [((r�2)&k) h8s(x)]r

r!
. (5.28)

We now combine (5.27) and (5.28) together with (3.5) to give much as
in (5.14),

&W2r
h8s (x) P(x)&W(h8s(x))r P(r)(x)&q

Lp ( |x|�_(2s))

�C5hrq &WP (r)8r
s(x)&q

Lp(R) :
n

l=r+1

(C6 (n�an) h)(l&r)q l !q

l !q , (5.29)

where C6 is independent of t, n, h, Pn , and l.
Now by (2.26), (2.4), and (5.23) we can choose :>3 independent of

t, n, h, Pn , l, and C2 such that au<a:n . Further (if necessary) we make $
in the definition of s smaller still so that

$<min \ 1
8:

,
1
2+ (5.30)

and

2s�
t

4:
�

a:n

:n
.
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This gives

_(2s)�_ \ t
4:+�_ \a:n

:n +�a!n (5.31)

for some fixed 3<!<:.
It follows that we obtain using (5.31), (2.18), and (3.12),

&W2r
h8s (x)P(x)&W(h8s(x))r P(r)(x)&q

Lp( |x|�_(2s))

� 1
2 hrq &WP(r)8r

s(x)&q
Lp( |x|�_(2s)) (5.32)

provided (n�an) h)�2, where 2 is a fixed positive small number independ-
ent of t, h, n, Pn , and l.

Now by (5.30) and (5.23), it is easy to see that 2s�2(an�n) so that
\0<h�2s we have

&W2r
h8s(x)P(x)&q

Lp( |x|�_(2s))

�hrq &W(8s(x))r P(r)(x)&q
Lp( |x|�_(2s))

&&W2r
h8s(x) P(x)&W(h8s(x))r P (r)(x)&q

Lp(|x|�_(2s))

� 1
2hrq &WP(r)8r

s(x)&q
Lp( |x|�_(2s)) (by (5.32))

�C7hrq &WP (r)8r
s(x)&q

Lp (R) (5.33)

by (3.12). Now raising (5.33) to the p�q th powers, integrating for h from
0 to 2s using the fact that 8s(x)t8t(x), x # R (see (2.18)), and assuming
that 2<1 as we may, gives

trp &WP(r)8r
t(x)& p

Lp(R)�
C8

s |
2s

0
&W2r

h8s(x)P(x)& p
Lp( |x|�_(2s)) dh

�
C8

s |
s

0
&W2r

h8s(x) P(x)& p
Lp( |x|�_(2s)) dh

�
C8

s |
s

0
&W2r

h8s(x)(P&f )(x)& p
Lp( |x|�_(2s)) dh

+
C8

s |
s

0
&W2r

h8s(x) f (x)& p
Lp ( |x|�_(2s)) dh

�C9[&W(P& f )& p
Lp(R)+w� r, p( f, W, s)] (by (2.36))

�C10w� r, p( f, W, C2t)

by (5.26) and (5.24). Thus we have (5.25) and the lemma. K
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We now combine Lemmas 5.1 and 5.3 to give

Proof of Theorem 1.3. We have for any L>0 and 0<t<t0 ,

w� r, p( f, W, Lt)�wr, p( f, W, Lt)�C1Kr, p( f, W, tr)

�C2w� r, p( f, W, C3 t)�C2wr, p( f, W, C3 t), (5.34)

where C3 is independent of L, f, and t while C1 and C2 are independent of
f and t but depend on L.

Fix M>0 and choose L=MC3 and s=C3 t to deduce that

wr, p( f, W, Ms)�C2wr, p( f, W, s) (5.35)

and so we have the upper bound in (1.23). Similarly (5.34) gives

w� r, p( f, W, Ms)�C2w� r, p( f, W, s). (5.36)

Then (5.34) gives

wr, p( f, W, s)tw� r, p( f, W, s)tKr, p( f, W, sr)

with constants independent of f and s. The proof of the lower bound of
(1.23) is similar and easier. K

6. THE PROOFS OF THEOREM 1.5 AND
COROLLARIES 1.6 AND 1.7

We begin with:

Proof of Theorem 1.5. For each n�0, choose Pn* to be the best
approximant to f satisfying

&( f &Pn*)W&Lp (R)=En[ f ]W, p .

Here, we set P*2 &1=P0*. Now let t>0 be small enough and define n by
(1.18). Put l=[log2 n]= the largest integer �log2 n so that 2l�n<2l+1.

Then by Theorem 1.3 and Corollary 1.4

wr, p \ f, W,
an

n +
q

�C1Kr, p \ f, W, \an

n +
r

+
q

�C2 _&( f &P*2 l ) W&q
Lp(R)+\an

n +
rq

&P*(r)
2 l 8r

an�nW&q
Lp(R)&
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�C3 _E2 l [ f ]q
W, p+\an

n +
rq

:
l&1

k=&1

&[P*2k+1&P*2 k ](r) 8r
an�n W&q

Lp(R)&
�C4 _E2 l [ f ]q

W, p

+\an

n +
rq

:
l&1

k=&1
"[P*2 k+1&P*2k](r) 8r

a2 k+1 �2 k+1 (log(2 l&k))r�2 W&q
Lp (R)&

as r�1 and by (2.17). This can be continued as

�C5 _E2 l [ f ]q
W, p

+\an

n +
rq

:
l&1

k=&1

(l&k+1)rq�2 \ 2k

a2k+
rq

&[P*2 k+1&P*2k]W&q
Lp(R)&

by (1.20).
We can continue this as

�C6 _E2 l[ f ]q
W, p+\an

n +
rq

:
l&1

k=&1

(l&k+1)rq�2 \ 2k

a2 k+
rq

E2k [ f ]q
W, p&

�C7 \an

n +
rq

_ :
l

k=&1

(l&k+1)rq�2 \ 2k

a2k+
rq

E2k [ f ]q
W, p& . (6.1)

Now by (2.25) we have that ttan�n. Also by (2.18),

8t(x)t8an�n(x), x # R

so that by Theorem 1.3

Kr, p( f, W, tr)tKr, p \ f, W, \an

n +
r

+
and

wr, p( f, W, t)twr, p \ f, W,
an

n + . (6.2)

Thus (6.2) becomes

wr, p( f, W, t)q�C8 trq _ :
l

k=&1

(l&k+1)rq�2 \ 2k

a2k+
rq

E2k[ f ]q
W, p& ,

where C8{C8( f, t). K
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We deduce

Proof of Corollary 1.6. Suppose first that

wr, p( f, W, t)=O(t:), t � 0+

Then in particular

wr, p \ f, W,
an

n +=O \\an

n +
:

+ , n � �,

so that by Corollary 1.4

En[ f ]W, p=O \\an

n +
:

+ .

Next suppose En[ f ]W, p=O((an�n):). Let 0<=<1. Then, by (1.25)

wr, p \ f, W,
an

n +�C1 \an

n +
r

_ :
l

k=&1

(l&k+1)rq�2 \ 2k

a2 k+
(r&:)q

&
1�q

�C1 \an

n +
:

_ :
l

k=&1

(l&k+1)rq�2 \ an�n
a2k �2k+

(r&:)q

&
1�q

�C2 \an

n +
:

_ :
l

k=&1

(l&k+1)rq�2 \2l+1

2k +
(r&:)q(&1+=)

&
1�q

(by (2.11))

�C3 \an

n +
:

_ :
�

j=0

j(r�2)qa jq&
1�q

(for some 0<a<1)

�C 4 \an

n +
:

. (6.3)

Now for t>0 small enough, we may determine n by (1.18) and using
Theorem 1.3, (2.25), and (6.2) deduce the corollary for t. K

We now proceed to prove Corollary 1.7. We need first a lemma that will
prove useful in other related contexts.

Lemma 6.1. Let W # E1 , r�1, 0<p��, and assume (1.20). Then for
n�C and \Pn # Pn satisfying

&( f &Pn)W&Lp(R)�LEn[ f ]W, p (6.4)
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for some L�1, we have

&( f &Pn)W&Lp(R)+\an

n +
r

&Pn 8r
an �n W&Lp(R)tK \ f, W, \an

n +
r

+ , (6.5)

where the constants in the t relation depend on L but are independent of n
and f.

We remark that in particular, (6.4) holds for Pn* the best approximant
to f.

Proof. Let P*
n satisfy the required hypotheses. Then by the definition of

Kr, p( f, W, (an �n)r), we have

{&( f &P*
n )W&Lp(R)+\an

n +
r

&P*(r)
n 8r

an�nW&Lp(R) =�Kr, p \ f, W, \an

n +
r

+ .

(6.6)

Next choose Pn such that

{&( f &Pn)W&Lp(R)+\an

n +
r

&P (r)
n 8r

an�n W&Lp(R)=�2Kr, p \ f, W, \an

n +
r

+ .

(6.7)

Then

&(Pn&P*
n )W&q

Lp(R)�&(Pn& f )W&q
Lp (R)+&( f &P*

n )W&q
Lp(R)

�C1Kr, p \ f, W, \an

n +
r

+
q

(6.8)

by (6.7).
Further using (1.20), we can write using (6.8)

&(Pn&P*
n )(r) 8r

an �nW&q
Lp(R)�C2 \ n

an+
rq

&(Pn&P*
n )W&q

Lp(R)

�C3 \ n
an+

rq

Kr, p \ f, W, \an

n +
r

+
q

. (6.9)
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Thus by (6.8) and (6.9)

\an

n +
rq

&P*(r)
n 8r

an�n W&q
Lp(R)

�C4 _\an

n +
rq

&P (r)
n 8r

an �nW&q
Lp(R)+\an

n +
rq

&(Pn&P*
n )(r) 8r

an�n W&q
Lp (R)&

�C5Kr, p \ f, W, \an

n +
r

+
q

, (6.10)

so that (6.6) and (6.10) give the result. K

We can now give:

Proof of Corollary 1.7(a). We shall show that

&W2r
h8t(x) ( f, x, R)&Lp [|x|�_(2t)]�C1tr & f (r)8r

t W&Lp(R) (6.11)

and

inf
P # Pr&1

&W( f &P)&Lp [|x|�_(4t)]�C2 tr & f (r)8r
t W&Lp(R) . (6.12)

We begin with:

Proof of (6.11). We begin with an observation.
If h>0 we may write

|2r
h( f, x, R)|= }|

h�2

&h�2
|

h�2

&h�2
} } } |

h�2

&h�2
f (r)(x+t1+ } } } +tr) dt1 dt2 } } } dtr }

�hr&1 |
hr�2

&hr�2
| f (r)(x+s)| ds. (6.13)

Now note that for s # [&rh8t(x)�2, rh8t(x)�2] and x # [&_(2t), _(2t)] we
have by (2.26)

8t(x)t8t(x+s).

Thus we may deduce from (6.13) that for |x|�_(2t) as

|W2r
h8t(x)( f, x, R)|

�C3 hr 1
(rh8t(x)�2) |

rh8t(x)�2

&rh8t (x)�2
|Wf (r)8r

t(x+s)| ds. (6.14)
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Case 1. p>1. We recall the definition of the maximal function
operator

M[ gt](x) :=sup
u>0

1
2u |

u

&u
| g(x+s)| ds

which is bounded from Lp to Lp , 1<p��. It follows that (6.14) can be
rewritten as

&W2r
h8t(x)( f, x, R)&Lp[ |x|�_(2t)]�C4 hr &M[W8r

t f (r)]&Lp(R)

�C5 tr & f (r)8r
t W&Lp(R) .

Case 2. p=1. Integrating (6.14) and noting that if u=x+s, then for
the range of x and s above,

8t(x)t8t(x+s),

we obtain

|
|x|�_(2t)

|W2r
h8t(x)( f, x, R)| dx

�C6hr&1 |
|x| �_(2t)

1
8t(x) |

|s|�(rh�2) 8t (x)
|Wf (r)8r

t | (x+s) ds dx

�C7hr&1 |
|s|�(r�2)h8t (x)
u :=x+s : |x|�_(2t)

1
8t(u)

|Wf (r)8r
t | (u) |

|s|�(rh�2) 8t(u)
ds du

�C8hr |
R

| f (r)W8r
t | (u) du.

Next we give:

Proof of (6.12). We mimic the proof of (4.2) for p>1. For the given
t>0, write 4t=au �u. Determine n=n(t) by (1.18) and recall utn (see
(2.26)) so that

(a) _(4t)�au�a:n
(6.15)

(b) _(4t)�au�2�a;n

for some :>1 and ;>0.
As in the proof of (5.9), we may without loss of generality suppose that

x>0. Suppose first that r=1. We have
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inf
P # Pr&1

&W( f &P)&Lp [x�_(4t)]�&W( f &f (a;n))&Lp[x�a;n ]

="W(x) |
x

a;n

f $(u) du"Lp[x�a;n ]

�C4

an

nT(an)1�2 &Wf $&Lp [x�a;n]

�C5

an

T(a:n)1�2n
&Wf $&Lp [x�a;n ]

�C6

an

T(_(t))1�2 n
&Wf $&Lp [x�a;n ]

�C7

an

n
&Wf $8t&Lp[x�a;n ] (6.16)

by Lemma 4.2, (2.2), and (2.16).
Assume (6.16) holds for 1, 2, ..., r&1. Choose S # Pr&2 such that

&W( f $&S)&Lp[ |x|�_(t)]�C6 \an

n +
r&1

& f (r)8r&1
t W&Lp (R) .

Set

P(x) := f (a;n)+|
x

a;n

S(u) du.

Then we can bound the left hand side of (6.12) by

&W( f &P)&Lp [x�a;n ]�C7 "W(x) |
x

a;n

( f $&S)(u) du"Lp [x�a;n ]

�C8

ar
n

nrT(an)1�2 & f (r)W8r&1
t &Lp [x�a;n ]

�C9 tr & f (r)8r
t W&Lp (R) (6.17)

and we have our result. K

Finally we give:
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Proof of Corollary 1.7(b). Write t=au �u and let n=n(t) be determined
by (1.18).

Firstly

Kr, p( f, W, tr)= inf
P # Pn

[&( f &P)W&Lp (R)+tr &WP (r)
n 8r

t &Lp (R)]

�inf
g

[&( f &g)W&Lp (R)+tr &Wg(r)8r
t &Lp (R)]

=K*r, p( f, W, tr). (6.18)

Next, we may choose g such that

&( f &g)W&Lp(R)+tr &Wg(r)8r
t &Lp (R)�2K*r, p( f, W, tr). (6.19)

Also by Lemma 6.1, Theorem 1.3, and Corollary 1.4 we may choose Pn

such that

&(Pn& g)W&Lp (R)�C2wr, p \g, W,
an

n + (6.20)

and

\an

n +
r

&WP (r)
n 8r

t &Lp(R)�C3 wr, p \g, W,
an

n + . (6.21)

Thus by (6.19)�(6.21) we have

Kr, p( f, W, tr)

�&( f &Pn)W&Lp(R)+tr &WP (r)
n 8r

t &Lp(R)

�C4 [&( f &g)W&Lp (R)+&(g&Pn)W&Lp(R)+tr &WP (r)
n 8r

t &Lp (R)]

�C5 _&( f &g)W&Lp (R)+wr, p \g, W,
an

n +&
�C6 [&( f &g)W&Lp (R)+wr, p(g, W, t)] (by (6.2))

�C7 [&( f &g)W&Lp (R)+tr &g(r)8r
t W&Lp (R)] (by Corollary 1.7(a))

�C8 K*r, p( f, W, tr). (6.22)

Then (6.18) and (6.22) give the result. K
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