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We prove converse and smoothness theorems of polynomial approximation in
weighted L, spaces with norm HfWHLP(R, (0 <p < o) for Erdds weights on the real
line. In particular we prove characterization theorems involving realization func-
tionals and thereby establish some interesting properties of our weighted modulus
of continuity. © 1998 Academic Press

1. INTRODUCTION AND STATEMENT OF RESULTS

Let W:=exp(— Q) where Q: R — R is even and is of faster than polynomial
growth at infinity. Then W is called an Erdés weight.
Archetypal examples of such weights are

(@) Wi (x):=exp(—exp.(|x[*), a>1 k=1, (L.1)
where exp,( ) =exp(exp(---(exp( )))) denotes the kth iterated
exponential.

(b) W, p(x) :=exp(—exp(log(4 +x?)F)), (1.2)

where > 1 and 4 is large enough.

For more on the subject, we refer the reader to [ 16, 18] and the references
cited therein.

Recently, we investigated Jackson theorems for large classes of Erdds
weights in L, (0 <p<o0) [2]. More precisely, we estimated how fast

ELf1w.pi= jnf |(f=P)Wlp e =0, n— .
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Here E,[ /]y, , is the error of best weighted approximation for suitable
fR—- R and £, denotes the class of polynomials of degree at most ».

Direct and converse theorems for rates of approximation are an exten-
sively researched and widely studied subject. For weights on R, analogues
of Jackson—Bernstein theorems were initiated by Dzrbasjan, but were more
intensively studied by Freud in the 1960s—-1970s [ 10, 11, 23]. Since then,
their ideas have been generalized and extended by many. See [2, 7-9, 12,
19] and the references cited therein.

In this paper, we investigate converse theorems of polynomial approxima-
tion for Erdés weights. To state our results, we need a suitable class of weights
and various quantities.

Throughout, C, C,, C,, ..., will denote positive constants independent of
n, x and P e 2, not necessarily the same in different occurrences. We write
C# C(L) to mean that the constant is independent of L.

Moreover for real sequences A, and B,#0, 4,=0(B,), A,~B,,
and A4,=o0(B,) will mean respectively that there exist constants
C,, C,, C;>0 independent of n such that 4,/B,<C,, C,<A4,/B,<C,
and lim,_,  |A4,/B,| =0. Similar notation will be used for functions and
sequences of functions.

We shall say that a function

f:(a,b)— (0, 0)
is quasi-increasing if 3C > 0 such that
a<x<y<b=f(x)<Cf(y).
We need a suitable class of weights:

DerFiniTION 1.1, Let W(x):=exp[ —Q(x)] where O:R — R is even
and continuous satisfying,

(a) xQ'(x) is strictly increasing in (0, oo) with

'lir¥)1+ xQ'(x)=0.
(b) The function
xQ'(x)
= 1
T(x) o) (1.3)

is quasi-increasing in (C, c0) for some C >0 and

lim T(x) = co. (1.4)

X — o0



CONVERSE AND SMOOTHNESS THEOREMS 351

(c) Assume

yQ'(y) _ <Q(y)>c3

\C VRN
xQ'(x) '\ 0(x)

y=xz=C,. (1.5)
for some C,, C,, C;>0. Then Q is called the external field associated with
W and we write We é,.

Some Remarks. (a) The function T serves as a measure of the regularity
of growth of Q. In particular, it is not difficult to show that (1.4) forces Q
to be of faster than polynomial growth at infinity.

(b) We need the condition that xQ'(x) be strictly increasing in order
to ensure the existence of the Mhaskar—Rakhmanov—Saff number, a, defined
as the positive root of the equation

1 !’
u:gf @1Q@ndt = (16)
T Jo 1—¢

For those unfamiliar, the quantity (PW), Pe %, “lives” most of the time
in [ —a,, a,]. We refer the interested reader to [17, 21, 26] for more on
a, and its “cousin” ¢,, the Freud number. For a different perspective on
discrete sets and to concave external fields, we refer the reader to [4,5].
For Erdés weights, a, has the effect that although Q(x) might grow very
rapidly for large x, Q(a,) does not exceed a positive power of u. For example,
for W, ,,a, grows like (log,u)"* where log,( )=1og(log(---(log())))
denotes the kth iterated logarithm.

(c) Inequality (1.5) is a weak regularity condition on T, for one has
typically for each ¢ >0,

T(x)=0(log Q'(x))' ™%,  x— oo. (1.7)

For example, for W, ,(x),
k—1
T(x) = oax™ { [T expj(x“)} ,
j=1
so that C; can be made arbitrarily close to 1. This is also the case for W, 4.

We proceed to define our modulus of continuity and realization functional
asin [ 1-3].
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For 4> 0, an interval J,r>1, and f: R— R we define

- (T ; rh rh
| (—1)’f<X+—ih>, walley
A(fox, J) = i§0<l> 2 >
0, otherwise

(1.8)

to be the rth symmetric difference of f. If J is not specified, it can be taken
as R

Following ideas of [9], to reflect endpoint effects in our approximation,
we need our increment % in (1.8) to depend on x and in particular on the
function,

@,(x) :‘ ;ft') ChTe) R wer, (1.9)
where
a(1) :=inf{a,,:‘::<z} (1.10)

and >0 but is typically small enough.
An easy way to understand ¢ is to see it as the inverse of the map

which decays to zero as u — oo. Clearly o is decreasing.
We may then define our weighted modulus of continuity for 0 <p < o0
and r>1 by

w,, p(.f; W,t):= sup | W(AZQ(X)(]{))HLP(\X\ <a(21)

O<h<t

+ inf [(f—R) WHLF(\X\>(7(4I))' (L.11)

Rofdeg<r—1

Further, we define its averaged “cousin,”

~ 1 ¢t ) 1/p
L p(f; W, t):= <l Jo [ W(A;z(l)’(x)(f))” Izp(m <a(21)) dh>

+ inf [(f—R) W‘|Lp(\x|>z7(4t)) (1.12)

R ofdeg<r—1

(if p=o00 we set w, ,=w, ,).
Clearly w, ,(f, W, t)<w, ,(f, W, 1).



CONVERSE AND SMOOTHNESS THEOREMS 353

Some Remarks Concerning Our Modulus. (a) Although at first difficult
to assimilate, we see that the definition of ¢ in (1.10) is natural, as at least
for purposes of approximation by polynomials of degree <n, we may think
of t =a,/n (recall ¢ is small) so that () grows like «,,. Following [ 9], our
modulus consists of two parts. The “main” part involves rth symmetric
differences over the interval [ —a,, a,,]. The “tail” involves an error of
weighted polynomial approximation over the remainder of R and is necessary
because of the inability of (P, W) to approximate beyond [ —a,,,, a,,]. Its
presence ensures that at least for fe 2 _,,

w, (s W, 1) =0,

For converse saturation type results, we refer the reader to [3].

(b) We note that the function @, describes the improvement in the
degree of approximation near +a,,,, in much the same way that /1 — x>
does for weights on [ —1, 1].

(c) We observe that unlike the moduli in [8, 9], our modulus w is
not necessary monotone increasing in ¢. This created severe difficulties in
our analysis. The results of [ 2] show that under additional assumptions on
W it is possible to replace our modulus by one that is increasing in f;
however, for & this is an open question.

In [2], we proved the following Jackson theorems:
THEOREM 1.2. Let Weé,, r=1, and 0<p < co. Then for all fR— R

Jor which fW e L,(R) (and for p = oo, we require f to be continuous, and f W
to vanish at + o), we have for n= C,

En[f] W,p< Clﬂjr,p <f; W/a CZCZ1> < Clwr,p <f; Ws C2c;n>> (113)

where the C;, j=1, 2, are independent of f and n.
Moreover, given A(n)e[2,1],

ELL Dy < Col (W5 Coat ) <o, (1, ot 2 )
(1.14)

Some remarks. (a) The result above indicated a Nikolskii-Timan—Brudnyi
effect whereby, as in weights on [ —1, 1], we have better approximation towards
the endpoints of the Mhaskar—Rakhmanov-Saff interval.

(b) We remark that with a little extra effort, we may replace C in
(1.13) by r—1 (cf. [3]).
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In establishing our converse theorems, we need the notion of the K-func-
tional. While K-functionals were introduced in the context of interpolation
of spaces, one of their most important applications has been in the analysis
of moduli of continuity, and in converse theorems in approximation theory.
J. Peetre first made the connection between his K-functional and the modulus
of continuity in 1968. His ideas have been generalized and extended by
many including Ditzian, Freud, Hristov, Ivanov, Lubinsky, Mhaskar, and
Totik. We refer the reader to [8-12] and the references cited therein.

The Ditzian-Totik rth order K-Functional has the form

K)fp(f; W, t) = inf { I(f—g) WHL[,(R) +1 Hg(r)WHLp(R)}-

g
glr=1 locally absolutely ( 1.15 )
continuous

Here, 1 >0, r>1, and p>1.

We may think of the second term of (1.15) measuring the smooth part
of f'and the first part measuring the distance of f to that smooth part [9].
The idea, following a general technique of Ditzian, Hristov, and Ivanov
[7], is to prove inequalities of the form

w, (L W, at) SC K] (f, W 1) <Cuw, (f, W, 1) (1.16)
for a suitable modulus w” (f,.). Here o >0 is fixed in advance, C;, C, >0,
and ¢ is small enough.

Unfortunately, K* =0in L, (0 <p<1) [7], so we need the notion of a
realization functional, a concept attributed to Hristov and Ivanov. Our

realization functional has the form

K, p(f> W, t") ::Pi££ {H(f_P) W”LP(R)"‘ t HPM(I’; WHLF([R)}: (1.17)
where >0, 0 <p< oo, and r>1 are chosen in advance and
. day
n=n(t) :=1nf{k:k<t}. (1.18)

Further define the ordinary K-functional by

Kjf 17(.](; W, t):= inf { I(f—g) WHLF([R) +1 Hgm@’r’ /4 LP(R)}'

g
glr=1 locally absolutely ( 1.1 9)
continuous

We begin with our main equivalence result:
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THEOREM 1.3. Let Wedé,, L,a>0, r=1, O0<p<oo, and f as in
Theorem 1.2. Assume that there is a Markov—Bernstein inequality of the form

n
HR’n ¢an/n WHLI)([R) < C; HRn WHLP([R)S 0 <p < o0, Rn E%, (120)

n

where C# C(n, R,). Then 1C,, C,, C5>0 independent of f and t such that
for te(0, t,),

(a) M/r, p(.f; VI/’ Lt) < Cl Kr, p(.f; VI/’ tr) < C2 M)r, 1)(.f’ W> C3t) (121)

Moreover, uniformly for t and f,

() w. (LW ) ~w, (LW, 1)~K, (W, 1) (1.22)
and
(c) w,.(fi Wat)~w, (f, W, 1). (1.23)

Note that the constant in the ~ relation in (1.23) depends on «. For the
exact dependence, we refer the interested reader to [3].

Remark. (a) The Markov inequality (1.20) is true for Wedé; [15].
For this reason, we dispense with the proof here and assume the result. We
refer the interested reader to [ 8, 19] where similar assumptions were made.

(b) Inequality (1.20) was proved for p =00 in [18] and for 0 <p < o0
in [ 20] under additional conditions on @, namely conditions on Q" which
are satisfied for W) , and W, , given by (1.1) and (1.2).

(c) We finally note that for p > 1, the methods of [ 9] should enable
one to avoid assuming (1.20) altogether. However, as it is needed in the
later corollaries, we do not pursue this idea further here.

Theorem 1.3 allows us to deduce a simpler Jackson theorem to Theorem 1.2:

COROLLARY 1.4. Assume the hypotheses of Theorem 1.3. Then we have
forn=C,,

En[f] I/V,p< Czn_ir,p <ﬁ I/I/’ CZI> < CZWr,p <fa W) ‘j;> (124)

Here, C, is independent of f and n.

We note that the point of this corollary is that we have removed the
constant from inside the modulus in (1.13) and (1.14).

We have the following converse theorems:
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THEOREM 1.5.  Assume the hypotheses of Theorem 1.3. Let ¢=min{l, p}.
For 0 <t < C, determine n=n(t) by (1.18) and let [=[log, n] = the largest
integer <log, n. Then we have

! 2k N\ra 1/q
whWo<er| ¥ u—kener () Eatrny,| L )
k=—1 2k
where C,# C,(f, t) and where we set E, 1= Eo.
We deduce

COROLLARY 1.6. Assume the hypotheses of Theorem 1.3. Then for every
0 <o <r the following are equivalent:

@) w, (f; W,1)=0(r"), 10", (1.26)
(b) K, (fs W,t")=0(t"), t—>0%,
)  E[f] W,p=0<‘;”>a, n— 0. (127)

Remark. We remark that a different characterization appears in [3]
where o is allowed to equal r.

Finally, we obtain estimates of our modulus in terms of /" and deduce
the equivalence of the K-functional with the realization functional for p > 1.

CorOLLARY 1.7. Let 1 <p < oo and assume the hypotheses of Theorem 1.3.
(a) If f"WeL,(R), we have for te (0, C,),
w,. ])(.f; W, )< Ct" Hf(r)@; W”LP(IR)' (1.28)

Here C;#C;(f, 1), j=1,2.
(b) We have for te (0, Cy),

L<K?,(f, Wo0)/K, (f, W, 1)< Cy. (1.29)

Here C;# Ci(f, 1), j=3,4.

Remark. We remark that (1.28) is false for 0 <p < 1. Indeed set for
ee(0,1)

fi(x) =0, xe[—1,0]
e lx, xe(0,¢]

1, xe(e 1].
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Then fWelL, (0<p<1), fis of compact support and so it is easy to see
that for fixed ¢ >0, there exists C= C(z, W) >0 such that

M)r, p(f;:s W, [) > C
and

If:® Wl w—0, >0

An Important Note on the Structure of This Paper. Sections 2 and 3,
establish some machinery required for the entire paper. This includes, in
particular, an extension of the Markov—Bernstein inequality (1.20). Many
of the proofs are technical and serve merely as tools for the proofs of our
main results. Thus, we suggest the reader skip these sections at first and
return to them at the end of the paper. In Section 4, we prove a theorem
required for the lower bound in Theorem 1.3, whereby we approximate
polynomials of degree n, n > 1 by those of degree r — 1, r > 1. This technique,
although similar to that used in [8], is new for Erdds weights on R and
[ —1,1] and we believe it to be of independent interest. In Section 5 we
prove Theorem 1.3 and Corollary 1.4 and in Section 6 we prove Theorem
1.5 and Corollaries 1.6 and 1.7.

2. TECHNICAL LEMMAS

LEMMA 2.1. Let Weé,. Then
(a) Given A>=0, the functions Q'(u)u~" and Q(u)u=" are quasi-
increasing and increasing respectively for large enough u.

(b) a, is uniquely defined for ue (0, o). Furthermore, it is a strictly
increasing function of u.

(c) We have for u large enough and o> 0

(i) a,0'(a,)~uT(a,)'”?, 1)
(ii) O(a,) ~uT(a,) "'
(iii)  T(ay)~T(a,),
(iv)  Olau)~0O(a,), (2.2)
(v)  Qlaw)~0'(a,)
(d) If a>1 we have
Zt”—l’~T(a”)l (23)
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from which it follows in particular that ¥Yf >0,

e 1, us o (2.4)
a

u

(e) For some C;, j=1,2,3, and s>r= C;

GG e
(f)  There exists ¢ >0 such that
T(a,)=Ou">"*). (2.6)
Moreover, Y6 >0
a,=o(u’), U— 0 2.7)

(g) There exist C;, j=1,2,3, such that for vZzuz> C,

CZ/T(au)
<av> <C <”> , (2.8)
a, u

and

BEe™™ e

In particular, given ¢ >0, we have for v=u > C,
(&)<a(®). (210)
a, u
e—1
G e
v u u

Proof. Firstly, (a)-(c) [(i)—(iii)], (2.3)—(2.6) are part of Lemmas 2.1
and 2.2 in [2]. The rest of (2.2) follows from (2.1). Relation (2.7) will
follow using [(a)], as given 4 >0

A —1/2 (au)A
C(a,)'<0(a,)~uT(a,) "?=—"—>0, u— 0.
u
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It remains to show (g). Now by (2.1) and then (2.5)

UT(aU)*l/Z Q(av) o ﬁ C,T(a,)
uT(au)‘/2~Q(au)/<a > »

C,/T(a,)
a, AN
<l' > <G, <> .
a, u

So we have (2.8) and then (2.9)—(2.11) also follow. ||

v
C17>
u

u

which implies

Lemma 2.2. Let Weé,.

(a) Let t>0 be small enough. Then there exists u such that

I (2.12)
u

(b) Let ¢>0. Then for u large enough

o <a> =y, (2.13)
u

where
u(l —¢)<ov(u)<u

(c) Let a>1. There exists C,, C,>0 such that for sja<t<s and
s<C

a(t) C,
I<—<1+ 2.14
o) = T Ta(0) 214
Further, for t small enough, we have for some ¢> 0,
2—¢
T(a(t))=0<a(tl)> . (2.15)

(d) Recall the definition (1.9) and let (0, c0). Then we have for
some C,>0 and VxeR

D (x)=C, T(a(1)) P> (2.16)

t
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Further if m<n and n, m = C,, then

qjan/n(x) n
sup ——<C; [log(2+—, (2.17)
xeR Qum/m(x) m

for some Cy>0 independent of n, m, and x.

(e) Given a> 1, there exists C, > 0 independent of s, t, and x such that
for 0<s<C, and sla<t<s

D (x)~D,(x), xeR. (2.18)
(f)  Uniformly for n=1 and xe R,

D, (x)~ ‘1—"“ + T(a,) " (2.19)

an

Further given >0, we have for some C,>0 and for all xe R,

4

a,/n

(x)=C,T(a,) "~ (2.20)

Proof. Inequality (2.16) follows from the definition of @,. Relations
(2.12)—(2.14), and (2.17)—(2.19) are part of Lemmas 3.1 and 7.1 in [2].
Inequality (2.20) follows from (2.19). Finally to prove (2.15), we may by
(2.12) put t=a,/u for some u>u,. Then using Lemma 2.1(b), (2.13), and
(2.6) gives for some ¢ >0

T(o(t)) < T(a,)=Ow>~*) =0 <0-([)>2,,.. :

t

We have an infinite-finite range inequality:

LemmaA 2.3. Let Wedé,, 0<p<oo and s>1. Then for some C,, C,,
Cy;>0and VPe?, n=1,

(a) HPWHL/](R)gcl ”PWHLP(fa (2.21)

sn> am) >

(b) ”PWHLp(m >ag,) < C,exp[ — C3nT(a,) _1/2] ”PWHLP(—H

sn> aSH) :

(2.22)

Proof. This is Lemma 2.3 in [2]. |
Note that (2.6) shows that for large n,

nT(a,)”"?=n%, some C;>0.
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LEMMA 24. Let Weé,, te(0,t,) and f>0. Put for u>=u,

_ta,
u
and set
n:=n(t)=inf{k:ak<ﬂa“}. (2.23)
k u
Then
(a) Gl _dur (2.24)
n u n—1
(b) Pl 0 (2.25)
n u n
(c) wu~n. (2.26)

Proof. Inequality (2.24) follows from the definition of n. Inequality
(2.25) follows from (2.24) as

a,_,<a,.
To show (2.26), we first show that Jo > 0 such that
u<an. (2.27)

Suppose first that u>n. Using (2.24) and Lemma 2.1(g), there exists

C> 0 such that
—12
1 a /a <C <u>
p uln n
which implies (2.27). Suppose u <n. Then (2.27) follows with a=1. So it
suffices to show that 3C, > 0 such that
uz=Cyn.

If n—1>u by (2.24) and Lemma 2.1(g), there exists C, >0 such that

,8<a"1/a”<C <n—1>1/z
= 1u>"7

n— u
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which implies
u=Csn
for some C;>0. Further, if u>n—1 we are done. ||

We now present two lemmas on differences.

LeEMMA 2.5. Let Weé&,.

(a) Recall the difference operator A’ defined by (1.8). Then we have
VxeR, VPe? _,,r=1, feR, and t>0

(1) Adyps o P(x)=0,
ol PIX) (2.28)
(i) rIADH(X)) = Ay X"

(b) Let L,s>0. Then uniformly for u=1 and |x|, |y| <a,, such that

lx—yl <L 1—<|y|
u a

) or |x—yl<L%T(a)",
u

us

we have
W(x)~ W(y). (2.29)
(c) Let L, M>0. For te(0, ty), |x|, |y| <o(Mt) such that
|x —y| < Lt®(x)
we have (2.29) and
D(x)~D(p). (2.30)
Proof. This is Lemma 3.2 in [2].

LemmA 2.6. Let Weé,, 0<o<l1; L, M>0 and 0 <p < o0.

(a) Let se(0,1) and [a, b] be contained in one of the ranges

s 2
|x|<a(t)[l<260(l)>} (2.31)

or

s 2
x| = a(t) {1+<250(1)> } (2.32)
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Then

[t s o<y f|f<x)| dx, (2:33)
where

{g}:z {;2;} (x+50,(x):xe[ab]}. (2.34)

(b) Let r=1, te(0,1/M), he (0, Mt), and [a, b] be as above with
s = Mrt. Define a and b by (2.34) with s = Mrt. Assume moreover that

[a,b] <[ —0a(Lt), a(Lt)]. (2.35)
Then for some C# C(a, b, t, g)

”A77<15,(x)(g7 x, R) W(x)|l L,[a, b] < CP inf || W(g—P)HLp[a b]

71
<CIWelLra61- (2.36)
Proof. (a) Define k=41 and u(x) :=x+ rs® (x).

We shall assume that [, b] is contained in the range (2.31) and also
a>0. The case where a<0 is similar, as is the case when [a,b] is
contained in the range (2.32). Then for xe[a, b],

KS

1
- P, /1
+2 1—(x/a(t))< a(t)>>

by (2.31). Hence u is increasing in [a, b] and writing v :=u(x) gives

u'(x)=1 -9,

[" 1t s, enl de= [ 1f(ue))]

I
—
A
N
=
<
=
=
<
I
<
=
=
=

in this case. The extra 2 in (2.33) takes care of having to split [, b] into
two intervals if a <0 <b.
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(b) Now recall that we have

W) (500 = X (1) (=17 Mg (x4 (51 b))

i=0

Also (2.29) gives
W(x)~ W <x + <;— i> hqb,(x)>

uniformly in i and for |x| <o(Lt) and h< Mt. Thus we obtain from part

[(a)]
b oo
082D iy <€ sup [ 1 (x4 (51 o))
o<i<r‘a
20
N P
<{5 ] 1 ()

Note that for 0 <i<r, (2.31) with s = Mrt gives

o[ 2] ) can - gl

so the range restrictions of (a) are satisfied.

Finally note that by (2.28) for Pe Z_,,
Ay (1 Py x, R) =0.
Hence

145,/(&> X R) W) 1 pa, 07 = 4o, 0(& = P X, R) W) 1, ra 03
<Cl(g=P)Wl a6

It remains to take the infimum over P. ||

3. A MARKOV-BERNSTEIN INEQUALITY

In this section, we prove an extension of the Markov—Bernstein
inequality (1.20).
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THEOREM 3.1. Let We &, and assume (1.20). Let 0 <p < oo and define
forn>=1,

¥ (x) :=<1—<x>2>2+T(a,,)‘2, xeR. (3.1)

an

Then for n=C,, 0<I<n, and VP € #, we have

)
|PU+ DUy Wil m < Cs {an +— T(an)”z} | POyl Wiew (32)

n n

n
<C3a—[l+l] HP”’Y’Z“WHLP(R). (3.3)

Here C;# C;(n, I, P), j=2, 3.

We remark that (3.2) and (3.3) will hold with constants depending on /
if we replace ¥)* by @, ,,.

More precisely,

n
[P DD W Ly < C {a +- T(an)‘/z} 1POD, Wrw (34
n
SCL— [+ 1T IPOD; |, W e, (3.5)

n

where C;# C;(n, P), j=4,5.
We need several lemmas.

LemMmA 3.2, Let s>1 and n=C,. Then there exist polynomials R of
degree o(n) such that uniformly for |x| <a,,

R(x)~ @, (x) ~ ¥, (x) (3.6)

and

Cl —12
|R'(x)/R(x)] <Y, (). (3.7)

n

Proof. Let
u(x) = (1 —x?)"¥4 xe[—1,1]

be the ultraspherical weight on (—1, 1) and let 2,(u, x) be the Christoffel
function corresponding to u satisfying

A;](ua X) E'%nfr
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Then it is known [ 25, p. 36], that given 4 >0 we have uniformly in #» and
x| <1—(4/n?)

i)~ (1) (38)
and
» C 2\ —5/4
)] < (1) (3.9)

Now choose m :=m(n) = the largest integer < T(a,) ' and put

1
R(x):=— 4,2 <u, X >, xe[—a,, a,].
m

a 2sn

Then by (2.6), R has degree o(n) and by (2.3), (2.6), (2.19), (3.1), and (3.8)
we have uniformly for |x| <a

sno>

R(X) ~ ¢an/n(x) ~ YIilz/4(x)'

To prove (3.7), we observe much as in [22, p.228] that

M':t(u: x/a2sn )|
aZ.\‘n;"i(ua x/aZ,m ) ’

’
X
;\,; ! <u, > =
[

so that by (3.8), (3.9), and the definition of R we have uniformly for

(3.10)

|X| <asna
—1
an aZ\n
<Sy ey
a

n

Our next lemma is an infinite-finite range inequality:

LEMMA 3.3. Let Wedé,. Let 0<p<oo, s>1, and ¥, be as in (3.1).
Then for n=C,, VPe 2,, and 0 <I<n we have

IPWE I ey < Cr IPWE R 1101 <y - (3.11)
Moreover,
‘|PW¥/1/4HL(\\\>113W)\C2 exp[ —C3n] “PWWI/4“L(“C‘<£Z3 )- (3.12)

Here, C;# Cy(n, P, 1), j=1, 2.
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We recall that (2.6) shows that for large n,
nT(a,) "?=n%. (3.13)

Proof. First note that by (2.20) and the definition of ¥, given >0 we
have

YN x)=T(a,) ",  xeR (3.14)

Now write /=4j+k, 0 <k <3. Then for some 0 <a <3 and C, depending
on k we have

i k,
‘|PW¥IZ4HLP(\X\>¢I3M): HPWYHn S11,7/4”Lp(|x\>a3m)
<C ‘|PW7’£X“HL[,(Mzam)- (3.15)

Now Px*¥7/ is a polynomial of degree <n+/+3<3n so by (2.22), we
may continue (3.15) as

< Cyexpl — CsnT(a,) 1 [PWX Y] 1 vy <a)
< Coexpl —CanTl(a,) T aT(a,) > |PWWL 4,y (by (314))
< Csexp[ — ConT(a,) ™ 2T IPWE | 11t <an,
by (2.7) and (3.13). |
We can now give:

Proof of Theorem 3.1. We prove (3.2). Then (3.3) will follow by (2.6).
Inequalities (3.4) and (3.5) will follow as

Y (x)~ D, (x), xeR.
Put s> 1 and write /=4j+k, 0<k<3. Put Q:=P". Then

. I+1 I+1)/4
Ji= | PUEDWOR)
=‘|QrW¥/{l’+(/c+l)/4HLp

!
=10 qur(v A Ly(|x] <asg,)

(Ix] < azg,

(Ix] <as,,)-

Choose by Lemma 3.2, R of degree o(n) such that
R(x)~ ¥,(x)

and

G —1/2
|R'(x)/R(x)| <— ¥, '*(x)

n
n

uniformly for |x| <as,,.
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Then continue this estimate as
TS G QWEIRS YY1y
where C, depends only on k. This in turn can be continued as

<G |[(Q¥LRY) W) Wil L3 <ay + C2 (¥ R QW) W L1 < ag
+C, |PHRY Q¥ W Ly(Ix| <ay,)
= Tl + T2 + T3.

We begin with the estimation of 7.
Note that Q¥ R* is a polynomial of degree <n+ [+ o(n)<3n. Thus,

we can write

n .
T\ <C— |Q¥ R W] 1w, (by (1.20))

n

n o
<C, a HQ‘PZ,R"WHL,,(M <ay,) (by (2.21))

n

n .
<Cs—||lo¥] 1w, (1x] < as,,)
» 3sn

n

n
SCs—[IPOVEW] L ). (3.16)

n

Next we estimate 7,.
Note that for |x| <a,, and by straightforward differentiation, (2.3) gives

(P1)] (x) < Co P, (x)/ V2 L,
an

Thus

J D ogrj—(1)2) yk/a+1/4
T, < C7; [P35 FANEl ZEani W“Lp(\x|<a3m)

n

J et i
SCr = IPPYE W L <an,
a » 3n

n

1T(a,)""”
)

<C HP(,,]) Y’L/“ WHLP([R{) (3.17)

n

by (3.14).
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It remains to estimate 7.
Write

T, < Cok || W'ZRI(7 IRIQTLM 4 L(Ixl <ay,)

Cok .
<% ¥/ sw;meWHLNX‘ cay) bY(3T)

n

IT(a,)"”
SCo— 1P WL ) (3.18)

n

as in the estimation of 7,.
Combining (3.16), (3.17), and (3.18) gives

/
J<Cyy {n+ T(an)]/z} HP([)Wle;M HLP([R{)s (3.19)

where C,, # Cy,(n, P, [).
Finally by (3.11), (3.19) becomes

n 1
|pUr Dl HL,,(R) <Cyp, {a—i— T(an)l/z} |‘P(1)W¥IZ4|‘L]7(R)

n n

as required where C,, # Cy,(n, P, [). |

4. APPROXIMATION OF POLYNOMIALS OF DEGREE <n
BY THOSE OF DEGREE <r—1

In this section, we obtain a crucial inequality introduced in a related
context in [8], in order to obtain an upper bound for our modulus in
terms of our realization-functional. The main idea is to approximate poly-
nomials of degree <n by polynomials of degree <r— 1. Here n>=>n, and
r=1.

We prove:

THEOREM 4.1. Let We &, and assume (1.20). Let r > 1, L>0,0<p < o0,
P,e?, and n= C. Set

P(x):=Pn(x)*fx ff P\u,) duy - du,_ €P ;.  (41)

Arn " 4rn 4rn

Then, 3C, >0, C, # C\(n, P,, P) such that

a,/n

a” ' r r
WP, = P 1 g0y, 0 < C (n> I WPDD, L. (4.2)
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We break the proof down into several steps. We begin with:

LemMA 4.2, Let We &, 1<p< . Then forn>CandVgeL,[a;,, ©),
1C, >0, C, # C,(g, n) such that

x a
W d < eWl, . (43
(X) J”Ln g(u) ! Lp[ﬂux’ 0) nT(an)l/Z Hg HLP[ L ) ( )
Proof. We notice that
x Wix)] "
W(x)'"? | W) "2 Q' u)du=2|1~— <2 44
' [ w2 ' du=2 | 1| 7] (44)

as r<x.
Next, notice that for u>a,,, and n large enough, we have by Lemma 2.1

nT(a,)"?

Q') > CQ'(ap,) ~ ", (45)

so that for x>a,,

# W)™ J |gW )| Q' ()W "> (u) du
>C, W(x)'"? j" |gW(u)'?| du= W(x) fx g(u)du|.  (4.6)

Now recalling Jensen’s Inequality for integrals

<] |f|f’dﬂ><jdﬂ)pl

valid for 4 measurable functions f and non-negative measures y, gives:

[ ra

Case 1. p= 0. Here (4.6) gives for x>a,,

an v ’ —
STy 18W e tay oy | QW () dlt

Arn

a

<G W’;)]/Z ”gWHLx [ag,. ©) (by (4.4)).
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Case 2. 1<p<oo. Here

X

H W) | gu) du

Ln

Lp[aL”, o)

dn . 2 [F , L P 1/p
<,1T(a)1/z“u [ W(x) L lgW(u)| OQ'(u) W (u)du] dx}

<Cc, Uw 2P*‘W(x)1/2r lgW(u)|” Q'(u) W—"2(u) du dx] "

nT(a,)"*| o, ap,
by Jensen’s Inequality, with du = W(x)"* Q'(u) W(u)~"? on [a,,, x] and
[du<2 (see (4.4)).

Then

[ w2 [T 1gWtl @) W) du dx

ar

Ln ar

=f | Wl U% W(x)"? Q' (1) dx} W) du

| |gW(u)|f’Uw W(x)"? Q’(x)dx} W) du  (as x> u)

u

S

ar,

<Cs HgWHIZp[amey |

We are now in the position to give:

Proof of Theorem 4.1 for 1 <p < o. We will repeatedly make use of (2.20):
?, u(x)=CT(a,)” "7 VxeR. (4.7)

Firstly, if r=1, Lemma 4.2 with g = P, gives

<

Lp [aLn, o0 )

a
1/2 HP;, W”LP(R)

W) [ Py, da, o

a, .
<G " 1P, P o (X)) W 1y (by (4.7)).
Now apply (4.1). If r =2, we apply Lemma 4.2 with

glu) =" P(w,) du,

Al
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to give

W l P§12)(uu) duo dul

”1)1 Arn

Lylap, o)

Wix g(ul)dul

aLn

Lp[ Arp, o )

an
<CoTay W,
a,
=C.—" _\'w P 2 )d“a
3 ( )1/2 f L,Lap, o)

2
a
n (2) 144
<C, <nT(a,,)l/2> P, HLP(R)

a,

2
<Cs< > IPE®2 (X)W, )

n

Applying now (4.1) and an induction argument on r gives the result. ||

We now treat the more complicated case, 0 <p < 1. For this case we
need two lemmas.

LEmMMmA 4.3. Let We &, and assume (1.20). Let 0O<p<1,r>=1, R, €2,
Re?P _,,and n=C. Set for xeR, and L>0

gn(x) = (RH_R)(X)

and
194 12 p/(1 —p)
J(x) = H|g; W(u)|”’< (")) (48)
W(u) L:L[aLn’X]
Then
b S v () _ RO
J dx<C —r W(R') — RY
Arn n(X) * ! |:j§1 <nT(an)l/2> H ( 8 )HL e bt )
an r=br )
+<nT(a)/> IWRY |2 (RJ (49)

Here C, # Cy(n, R, R).
Proof. Write

194 p/2(1—p)
0= el ()

L, [ay,,x]



CONVERSE AND SMOOTHNESS THEOREMS 373

and set

da,,
Ti=— 7,
nT(a,)

where ¢ > 0 is chosen small enough so that for n>1 and VSe Z,,

, _.nT(a,)"?
IS WHLP(R)S(Zé I)THSWHLP(R)' (4.10)

n

(See (1.20) and (2.20).)
Now given x >a,,, we set

k, :=k,(x)=max{k,:x—(k+1)t>a,,}

and write
Jn(x)<11+123
where
W(x) p/2(1—p)
I, := max |g§7W|”(u)< > (4.11)
! 0<k<k, W(u) L [x—(k+1)7, x—kt]
and
W(x) p/2(1—p)
I, = |g;W(u)|”< > . (4.12)
’ Wi(u) L [ap,, x—(k,+1)7]

First we observe that for ue[x—(k+1) 7, x —kt]

Wi(x)

W) S exp(Q(x —kt) — Q(x)).

Further, as x —kt>a,,>0

) ) nT(a,)"? da,k
O(x)— Q(x —kt) = C 1kt Q'(x —kt) = CrktQ'(a,) = C; “anT(a,)

= Cyko
by (2.1) of Lemma 2.1. So

W(x)
<W(u)

p/2(1—p)
) <ok, uel[x—(k+1)t, x—kr],
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where a € (0, 1) is independent of x, u, k. Thus we may write

k
I] +12<02}(a<xkna ”g; W”{l[x—(k+l)f,x—kt]
k
o g, W”Zx[aLn,xf(kqul)f]

ke (x)
<

X

k k
Z o* | g, W‘|1L7x[x—(k+1)r,x—kr] +a || g, WH{x[aL”,x—(kn+])T]‘
k=0

Then

0 ap,+(m+1)zt

[ C ) de= Y T, (x) dx

ap, m=0 “ar,+mzt

<§:f

m 0 "4 + mt

ap,+(m+1)t |: ko(x)

k
Y g, WH[I:x[xf(k+l)r,x7kr]
k=0

k
Fo 1&g WL ey, x—k,+ 1)1 dx} .
We observe that

ap,+(m+1)7

g, W|‘£%[x7(k+l)r,x7/cf] dx

ay,+mt
ap,+(m—k)z
! P
Hgn WHL%[x,erT] dx

ap,+(m—k—1)t

and since

xelap,+m—k—1)t,a,+(m—k)tl=m=k,2m—1,

we have

© [e'e) m—1 ap,+(m—k)z
[“rxdx< 3 [ P A Tar—
arp m=0L k=0 "ay,+(m—k—1)z
ar,+7t
+20(W[71 j Hg,n WH ZOQ[HL”, x] dx:|
ALn

ap,+(s+1)z

< Z |:f Hg’n W”z%[x,erT] dx< Z O('k>:|
A\':O aLH+ST

(m, k)
s=m—k—1

w2 [T NG WLy d
) n L, [ap,,x] (X.(l —OC)
<SG+ L]
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Here

© ap, +(s+1)t

. !
Li=Y | AL Tar—

s=0 “ar,+st

and
aer
IL :=L[“ 184 WNE 10y

375

(4.13)

(4.14)

We begin by estimating /5. Observe that g/, is a polynomial of degree
<n-—1for ue[x, x+1], so expanding it in a Taylor series about x gives

(by the inequality, (¢ +b)*<a*+b*, 0<a<l1,a, beR)

r—1

< z |R§1'/)(X) _R(./')(x)|17 r(./'fl)p_i_ Z |R§1./)(x)|l'r(./'*1)l’_

J=1 j=r

Thus using
W(u) < W(x), uel[x,x+1],
the definition of 7, and (4.10) gives
r—1
I,<C;s { Y (R — RY) Wpr[a,‘,,, Ly TP
j=1

£ S RV WIL “’”"}

j=r

r—1 j—1)
<C6 Z ain ! ! H(R(j)—R(j)) WHP .
2 nT(a )1/2 n L,lay,, ©)

. " /T (a, )1/2 (J=nrp r
by z( ) IRV W|L(R>}

r—1 =1
<C Z ain ! ! H(R(l R(’))WH
< Ly Tl )1/2 Lylag,, ©)

(a}’l

(r="1p "
+ <nT(an)1/2> HRn WH lep(R)} .

(4.15)

(4.16)
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To estimate I, we proceed in a similar way to that of I;, except that we
use (2.29) instead of (4.15), which we may do in view of the definition of 7,
(2.3), and (2.6). Combining our estimates for /5 and I, gives the lemma. ||

LEMMA 4.4. Let We &, and assume (1.20). Let 0<p <1, r=1, L>0,
R,e?,, ReP | satisfying,

(Rn - R)(Can) = 0
Then for n= C there exists C, # Cy(n, R,,, R) such that
H W(Rn - R)H L['[aL", o0)

a !
<C, H(nT()l/z> IW(R,—R')|7 JLag,. oc):|

r—1 (j—D(1—=p)
X Z L ’ ! H(R(.H R(/))WHL
nT(an)l/Z n [a, , 00)

j=1

o[ T R (417)
nT(a,)” n L,(R)

Proof. Set
gu(x) := (R, — R)(x)

satisfying g,(a,,) =0 and write

X

g(x) = giu) du.

4rn

Then

4= W(Rn_R)HL Lag,, ©) = IWg, HL[,[uLn’%)

) p 1/p
0 , 3 W(x)>]/2 P
< W 1=p
<“m lg, Wu)| <W(u) o
x W 1/2 p 1/p
XU Ig;W(u)|"<W§z))> du> dx} . (4.18)

Now apply Holder’s Inequality with r=1/1 —p, ¢ = 1/p satisfying r ' + ¢!

=1 to give

A< 15,



CONVERSE AND SMOOTHNESS THEOREMS 377

where
o - W(x)>1/2 p/1—p >(1 —p)p
I, = " W(u)|! ”< dx 4.19
1 ([ I ) R A (4.19)
and
© px W(x) 1/2 >
= / (o . 42
I, (f It (Fe) duds (420)

Now by (4.8) we may write

o0 (I=p)/p
L= <j J(x) dx>

4rn

r-l a (G=1(1—p) : o

n W(RY Dy||1—

< C|: 'Zl <nT(an)1/2> x H (Rn/ _R ' )HLP[IZILIL %)
j=

a, (r=1)(1=p) il
+ <1’17"(czn)1/2> IWR, |l L/](R):| (4.21)

(by Lemma 4.3).
Also

© 0o 12
Izzj |g;,W(u)|ﬁj <ng;“)> dx du.

arn u

Now if x>u>a,;,, Lemma 2.1 gives

, ) nT(a,)'?
0'(x)=C,0'(a.,)=C, (a
so that
L<C—"— " |g,Ww)” { W)~ [ W) Q'(x) dx | du
3 nT(an)l/2 a, n Y

a 0
< n ’ » :
<Cimsm] gl du

4rn

This gives

L<C, (R~ RYWIE (. (4.22)

nT(a:)

Combining our estimates for 7, and I, gives the result. ||
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We are now in the position to give:

Proof of Theorem 4.1 for 0<p<1. Let P,e%, and Pe%. _, be given
by (4.1). We first note that if 0 </<r,

(P —P)(ay,)=0.
Thus applying (4.17) to P! with r in (4.17) replaced by r—1 gives

” W(Pfyl) - PU))H Lp[a,_”, o0)

_ 4 (I+1) (I+1)
< || impgen— g,

r—1 a, (j—=I1—=1)1—p) )
X{ > <nT(a)”2> IW(P) — P, JLay, 1)}

Jj=I1+1

a, (r—I1=1(1—=p) "
+H(oresm) WP | (423)

We show that for k=r—1,r—2,..,0

a

r—k
P = PO < s (s | WP e (424)

Firstly, if k=r—1, (4.23) with /=r—1 gives
. . a
WPy =" =P ")l ta,,. )< Ca <nT(a)'/2> WP 1wy

Assume now that (4.24) holds for r—1, .., k+1. We prove (4.24) for k.
Substituting (4.24) with r—1, ..., k+ 1 into (4.23) with /=k gives

” W(Pilk) *P(k))H Lp[”LH’ )
(r—k—1)p "
<limemlmen) WL

X{ »71 < a, >(/ kl)(1p>< a, >(rj)(lp)}
12 1/2
Jj= k+1 an / nT(an) /

" (r—k—1)(1—p) "
x | WP, HL mt <T(an)1/2> WP} (R)}

r—k
n)1/2> H WP(r) HL (R)*
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Thus (4.24) holds for all k. In particular, we have
a r
IW(P, =Pl ray,. o)< Cq W H WPl 1w

a”l ' r r
<G <n> WPy @, ()l B

5. EQUIVALENCE OF MODULUS AND
REALIZATION FUNCTIONAL

In this section we prove Theorem 1.3 which establishes the fundamental
equivalence of our modulus of continuity and its corresponding realization-
functional. We also deduce Corollary 1.4. Throughout for 0 <p < oo we set

¢ :=min{l, p}.

We begin by quickly recalling the definitions of our moduli and realization
functional. See (1.11), (1.12), and (1.17). Let r>1, 0<t<C, and let
n=n(t) be determined by (1.18). Then we have

(1) r P f W t = Sup ” W(A;lrl)[(x)(f))HLp(\x\<17(21))

O<h<t

+ inf [(f—R) WHL/,(|x\>a(4z)> (5.1)

Rofdeg <r—1

1/p

@) W)= | [ I D i

+ inf [(f—R) WHLP(\X|>a<4t))> (5.2)

Rofdeg <r—1
where we set w=w for p =00 and

(3) K. (f, W, 1) := Pinj; U =PYWl L)+ 1 | P"®}(x) Wil L, e}
(5.3)

We begin with our lower bound.

Lemma 5.1. Let Weé,, assume (1.20), and let L >0 be fixed. Let r =1,
0<p< oo, and 0 <t<C. Then there exists C, # C,(f, t) such that

w, (s W, Lt)< C, K, (f, W, t"). (54)
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Proof. Let g=min{l, p}. Then by (2.12), there exists u such that

4Lt=a,/u. Now let n=n(t) be determined by (1.18) and recall it has the
form

. a;
=inf<k:—<1t;.
n=i1n { k l}

Thus by (2.25) and (2.18) we have

a t a
J<, _n .
o 2<n (5.5a)
and
¢[(X) ~ ¢un/n(x) ~ QLI(X) vx € R’ (SSb)

where the constants in the ~ relation are independent of ¢ and x. Also by
(2.13) and (2.26), 38 >0 such that

a(4Lt)=a<0;">>au/2>aﬁn. (5.6)

Choose P e 2, such that
I =PY Wi+ 1" |PODTW ) <2K, (£, W ). (5.7)
We show that

sup || W(A2¢lL(x)(f'))HLp(|x\ <oty S CeK, (fi W, 1) (5.8)

O<h<tL

and

inf I(f—R)W| L,(Ix| > o(4L1)) <K, p(.f; W, t"). (5.9)

Rofdeg <r—1

This then gives (5.4) using the definition (5.1).
We begin with:

Proof of (5.9). We appeal to Theorem 4.1 and choose for our given
P, Se®? | as in (4.1), so that (4.2) holds. Next we recall Lemma 3.1
from [8]. Let W be an even weight. Then for f satisfying fW e L,(R) and
for £ >0,
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inf  |(f=R) W qze<2Y77 inf [ (f=R) Wl (x>

Rofdeg <r—1 Rofdeg <r—1

+ inf (=R W< o

Rofdeg <r—1
We apply the above with ¢ :=g(4Lt). In particular, we estimate

inf I(f—R) W"%[}(x)a(‘lLt))'

Rofdeg <r—1
The other term can be handled similarly. Thus

inf [(f—=R)W| %p(x}o’(4L1‘))

Rofdeg <r—1

< U =)W st

<|(f—P) WH;],p(x>a(4Lz)) +[[(P—S) W|“1],p(x20'(4Lt))

SGK, (LW )+ I(P=S)WIE (v2a,,  (by(5.6)and (5.7))
SC(K, (s W )"+ Cyt” |[PYDTW] g

(by (4.2), (5.5a), and (5.5b))
< Cs(K, (fi W, 1)

Hence (5.9).
Next we proceed with:

Proof of (5.8). Let 0 <h< Lt and write

H W( 11<1> L(X)(f))H qL,,(\x| <a(2Lt)) < H W(AZ(I, L(x)(f_ P))H ?‘p(\x\ <a(2Lt))
+ || W4 hqsL(,\)(P))H;I,p(\Mga(ZLl))

=1+1,.
We first deal with the estimation of 7,. Note that given 4 >0,
|x] <o(2Lt)

implies

|x| o(2Lt) C, ( At >2
1— =>1-— = =
o(tL) o(tL) = T(o(Lt)) o(tL)
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by (2.14) and (2.15) provided ¢ is small enough. Thus (2.31) and (2.35) are
satisfied so that by (2.36),

LSC W =PI ) S C K, W 2)? (5.10)

by (5.7).
To deal with the estimation of I, we observe first much as in [ 8] that for

SOv) :z’il PO(x)(w—x)

I1=0

/! €7
we have by (2.28) that 4}, ., S=0.

Thus expanding P(x+ ((r/2) —k)h®(x)), 0<k<r, in a power series
about x gives

By P0)= 3 (1) (=14 P (x4 (5 =k )0 )
: o 2)— k) hb,, (x)]' PO
zkgo <I’;>(_1)A|:l§0+l;’:| [((}’/ ) ) . (X)] (X)
"y " L((r/2) — k) heb ()] PO(x)
-3 (g ’
so that

¥ /2
<a ¥ (L) [P ] 10et g o

rql,r : (r/z)h (=na
<G Y [1' [PODY W i <oorny (511)

I=r

Now by repeated applications of Theorem 3.1, we have by using (5.5),

|POD, W, )

a

n

‘ ‘ =1/ .
<Cly 1P, Wl G T (242 T@)?). (512

j=r

where C;, j=10, 11 are independent of n, x, /, L, and h. Now we observe
using (2.6) that given ¢ >0, we have for n large enough and r</<n

ﬂ< +L Ta)1/2><C128 r(;)"‘“. (5.13)

an n

Here it is important that C,, does not depend on /, n, 4, or L and that C,,
and C,, above are independent of e.
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We may now substitute (5.13) into (5.12) so that (5.11) becomes

L, <Cp3h™ HPM(D; WHZW(IR)

c {((V/Z)hCmCuS(n/an))“_”"l!"
e

I=r

) 1 k
S Ct™ |PYOTW|4 ) [2} (if & is small enough),
0

k=

SC it |PYD W< Ci6K,. o W) (5.14)

Thus combining (5.10) and (5.14) and taking sups over 0<h<Lt
gives (5.8). 1

We proceed with the upper bound. This is more difficult than the lower
bound and does not follow as easily using, for example, the methods
of [8]. The crux is establishing the following quasi monotonicity type
property of w.

LemMA 5.2, There exist C;, j=1,2, and 0 <&, <1 such that if 0 <A <eg,
and 0 <s, t < C, with

A<=<e, (5.15)

we have
W, (i W, s) < Cow, (f, W, t). (5.16)

It is important that the C;, j=1, 2, and &, do not depend on f; s, and ¢ but
depend on A.

Remark. We remark that the above property is by no means obvious
as we recall that our modulus is not necessarily monotone increasing. We
prove it for p < oo as the case p = oo is much easier.

Proof. Let us write
B » 27 K . . »
o L W) < | [ I D 50

+ W(A;,qss(x)(f))u zp(a(m)s x| < a(25)) dh

+27inf (S = R (= oany

Rofdeg <r—1

=1, +1,. (5.17)
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Firstly, by choice of s and ¢, s/t <1 so that
a(4s) = a(4t)
(recall ¢ is decreasing). Thus

L<2 il (= RWI = oan

Rofdeg <r—
<277 (f W, ). (5.18)

Next we estimate /.
Write 1, <I;+1,, where

2P rs X
I ::*f [ W( A} (,v)(f))‘|£(|x\<a(3z)) dh
S Jo s P

and

2P ps
I, :=—

5 )y TV o DI 030 < 11 < o200 -

We begin with the estimation of /,. To this end we make use of Lemma 2.6.
Much as in the proof of Lemma 5.1, we have

1,<C, inf ] [(f=R)W| Z,MXI >odn) S Ciw,, p(_f; W, 1)’ (5.19)

Rofdeg <r—

Here we used that for small ¢,

inf{x — Mrs® (x): 6(3t) <x <0(2s)} =a(3t) — Mrs® (a(31))
> 6(31) — C1d (5(31))
> 6(31)— CiT(a(1)) "
>a(3t)+0(1/T(a(2))) = a(4t)

by (2.3), (2.6), (2.14), (2.18), and as @, is decreasing in [0, g(2s)].

It remains to estimate /5.

As s and ¢ are small enough, we can use (2.12), (2.19), and (2.30) to
obtain a large enough positive integer n such that a,/n ~ s and then divide
J:=[ —a(31), o(3t)] into O(1/s) intervals J, such that

|Jk| <des(x)s xe‘]k'
Formally, we do this by choosing a partition

—o(3t)=19<7, -+ <71,=0(31)
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with
Tert @~ (x) dx
S‘[’“‘S—I():l, 0<k<n
[ro (x)dx n
and set
Jk:[Tka Tk+l:|'

Then if |J,| denotes the length of J, we have

(1) D(x)~D(y), x,yel; (5.20)

(2) W(x)~W(y),  x yel.

Here the constants in the ~ relation are independent of x, y, s, k.
Then

2P
1= [ I D 1 o

<G W@ [ <[ g ()1 dh

k Jie

1 sy x)/@,(x) D (x)
Ar i p ‘
ol A e ey

Now we may rewrite (2.17) for the given s and ¢ as

s (x)
w0 i <Cie(24])

for some C# C(s, t). It follows that

=C, ) W*(z)) f du dx.
k

Jk

if
s/t<eg,

where ¢, is independent of s and ¢. Then if 4 <¢,, we have for 1 <s/t<g,,

<C, VxeR,



386 S. B. DAMELIN

where C; and C, are independent of s, ¢, and ¢,. Then

1 rt
LECT W) [ | 1400 (17 dudy

k Ji
I . .
<o | I DI 1 ot
0
< Cow, (f. W, 1)". (5.21)

Combining our estimates (5.18), (5.19), and (5.21) gives the lemma. |

LEMMA 5.3. Let We &, and assume (1.20). Let r=1 and 0<p< co.
Then for 0 <t < C,, there exists C, and C; independent of f and t such that

K. (f, W, 1)< Cow, (f, W, C;t). (5.22)

Proof. Put t/2=a,/u for some u>u, and let n =n(z) be determined by
(1.18), so that

. a, 2a,
=inf<k: —=<
n=in { <, }
and
-t (5.23)
Now it is easy to see that for large enough u and the given n,

(=240 C
u n

for some A(n)e[%,1] and C>0 independent of n. We then apply (1.14),
and choose P e 2, such that

I(f =P) Wil < Ciw, ,(fs W, Cs1) (5.24)

for some C, and C, independent of f and .
We show that for some C;# Cs(f, 1),

[ PODIW Ly < C3w, ,(f, W, Cat) (5.25)
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for then by (5.24),
Ko S Wt = inf {1 = R Wy + £ [ROD W )
SIS =YWy o+ [POB W], e
S(C+Cy)w, (f, W, Cyt).

Thus we show (5.25).

Now let 6 >0 be a small enough positive number and put s:=4z. It is
sufficient at this point of the proof to choose J small enough so that by
Lemma 5.2,

M_;r, p(f; I/I/a S) < C4 M_}r, p(f; W’ CZI) (526)

Later, we will need to choose ¢ smaller still.
Let us recall much as in Lemma 5.1 that we have for 0 < A <s

By P)= Y <,i>(—1)k 3 L2200 hf“‘(x”lp 0 ()
k=0 I=r *
Applying (5.27) to x"€ P, and using (2.28) gives
d 2)—k)hd, "
(r!)flAz?y(x)xr:(hcbx(x))rz z <2>(_1)k[((r/ ) r‘) S(X)] ) (528)
k=0 :

We now combine (5.27) and (5.28) together with (3.5) to give much as
in (5.14),

[Wdp, (0 P(x) = W(hD(x))" PTO) ((4) <o20)
e " (Colnfa,) )79 119
<SG IWPOR)] ) X — g :

I=r+1

(5.29)

where C is independent of ¢, n, h, P,, and /.
Now by (2.26), (2.4), and (5.23) we can choose a >3 independent of

t,n,h, P,, [, and C, such that a,<a,,. Further (if necessary) we make o
in the definition of s smaller still so that
0 <mi L1 (5.30)
min | —, = .
8a’ 2
and
2S<L<aan
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t
o(2s)>a<>>a<a“">>a5n (5.31)
4o an >

for some fixed 3 <& <a.
It follows that we obtain using (5.31), (2.18), and (3.12),

| WA,e L (X) P(x)— W(h®(x))" P(r)(x)Hqu(\,q <o(2s))
<Sh | WP (x)| qLP(|x| <o(29)) (5.32)

This gives

provided (n/a,) h) < 4, where 4 is a fixed positive small number independ-
ent of £, h,n, P,, and L

Now by (5.30) and (5.23), it is easy to see that As< A4(a,/n) so that
V0 <h < As we have

| WA/@(v) (X)Hz/](\x|<a(2x))
=R [ W(D(x)" PN (11 < o201
— WA 0 P(xX) = W(hD (%)) PT) (141 < o201
= h T [WPODU() (1 <on (DY (532))
> C,h |WP" ", (x)HL (®) (5.33)
by (3.12). Now raising (5.33) to the p/qth powers, integrating for 4 from

0 to 4s using the fact that @ (x) ~ ®,(x), xe R (see (2.18)), and assuming
that 4 <1 as we may, gives

Cs
PO < [ WA POy

G
< [y PO < o

j 1WA (0P =S (1) < 209 D

C8 N r
+ L IW A0 ST (141 <020 A

< Cg{ WP — )| tzp(R) + W, 1'(f’ w, S)} (by (2.36))
< CIOM_;r,p(f; W, Cyt)

by (5.26) and (5.24). Thus we have (5.25) and the lemma. ||
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We now combine Lemmas 5.1 and 5.3 to give
Proof of Theorem 1.3. We have for any L>0 and 0 <t <¢,,
wr, p(f; I/I/a Lt) < M}r, p(ﬁ I/I/a Lt) < Cl Kr, p(f; Ws Zr)
S Cow, (i W, C3t) < Cow, (fs W, Cst),  (5.34)

where C; is independent of L, £, and ¢ while C, and C, are independent of
fand ¢ but depend on L.
Fix M >0 and choose L =MC, and s = C5t to deduce that

w, (fs W, Ms)< Cow, (f, W, 5) (5.35)
and so we have the upper bound in (1.23). Similarly (5.34) gives
W, (s W, Ms) < Cow, (f, W, s). (5.36)
Then (5.34) gives
W o W)~ 8, f Wos) ~ K, (. W S)

with constants independent of f and s. The proof of the lower bound of
(1.23) is similar and easier. ||

6. THE PROOFS OF THEOREM 1.5 AND
COROLLARIES 1.6 AND 1.7

We begin with:

Proof of Theorem 1.5. For each n>0, choose P} to be the best
approximant to f satisfying

H(f_P;k) W”LI)(R) :En[f] W, p-

Here, we set P¥_,=P§. Now let >0 be small enough and define n by
(1.18). Put /=[log,n] = the largest integer <log,n so that 2/'<n<2/*!,
Then by Theorem 1.3 and Corollary 1.4

q
(£ 0.52)
a}'l "\1
S
a”

rq
<G, { I(f = P3) WY gy + (n> |PXO DL W )
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a, rq 1—1
C3|:E21|:f]{{/V,p+<n> z H[P;kkﬂ_P;kk](r) u/nW|L([R):|

k= —1

<(j4 |:E21|:f]l{/V,p

a rg [—1
(%)
n k:z:fl

as r=1 and by (2.17). This can be continued as

[P;kk+l —P k](r) @a k+1/2k+l(10g(2] k))r/z W”L (R)}

c, [Ezf[f]%y ,

k

a, rg [—1 v 27
+<> Y (I—k+1)" <a

k=—1 2k

rq
) IEPs = PRI WL |

by (1.20).
We can continue this as

rg [—1 2k rq
cé{Ezl[f]‘gV,er(‘;") Y (1—k+1)rq/2<ak> Ezk[f]‘éy,p}

k=—1 2

<G, <“>q{ Y (I—k+1)? <az>q Ezk[f]%V,,,} (6.1)

n £ Sk

Now by (2.25) we have that t ~a,/n. Also by (2.18),
¢[(x) ~ Qun/n(x)’ X€ R

so that by Theorem 1.3

KW ~K, (1w (%))

and

w, (W) ~w, <f, W, ‘;> (6.2)

Thus (6.2) becomes

k

! 2
w, (fs W,Z)"SCgt’q{ Z (I— k+1"’/2<ak> Ezk[f]wp:|,

_ 2

Where Cg 75 Cg(f, t) I



CONVERSE AND SMOOTHNESS THEOREMS 391

We deduce
Proof of Corollary 1.6. Suppose first that

v, (fs W, t)=0(t"), t—>0"

Then in particular

(2ol

so that by Corollary 1.4
a’l *
En[f] W,p=0<<n> >

Next suppose E,[ /1w, ,= O((a,/n)*). Let 0 <e<1. Then, by (1.25)

r / 2/ (r—o)g1 l/q
e o~
2

r !

(r—a)g71/q
(I— ke 1y [l >
z + <a2k/2k

2l+1 (r—o)g(—1+¢e)71/q
< >  amke ()
(2.1

o0 1/q
< { Z <'/2>‘1a7‘1] (for some 0 <a<1)

<C4<">. (6.3)

Now for >0 small enough, we may determine n by (1.18) and using
Theorem 1.3, (2.25), and (6.2) deduce the corollary for z. ||

We now proceed to prove Corollary 1.7. We need first a lemma that will
prove useful in other related contexts.

Lemma 6.1. Let Weé,, r=1, 0<p< oo, and assume (1.20). Then for
n=C and VP, € 2, satisfying

I =P)W i SLE[ 1w, , (6:4)
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for some L= 1, we have

I(f=P,) W|L(R)+< > P, P, /nW'LF([R)NK(j; w, <CZ> > (6.5)

where the constants in the ~ relation depend on L but are independent of n

and f.

We remark that in particular, (6.4) holds for P} the best approximant
to f.

Proof. Let P satisfy the required hypotheses. Then by the definition of
K, (f, W,(a,/n)"), we have

{|<f—P,, W|L<R>+< >|P#<'><D;/,1WL(R>} (fW<n>>

(6.6)

Next choose P, such that

{|(f—P )W|L(R)+< > 1P @ WIL/,(m}SZKr,p <f; W, <‘;>>

Then

1P, = PEYWIE oy < NPy =YW () + IS = PEYWIT ()

<cik, (fm (%)) (68)
by (6.7).

Further using (1.20), we can write using (6.8)

n
H(P P#)(r) dsa /n WH%I)([R) < C2 <Cl

n

<G, <:>q K, , ( Lw, <‘;>>q (6.9)

rq
> I(P,—PY) WL (&)
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Thus by (6.8) and (6.9)
an\" s
(%) 10, W1,
a4\ e an\" #(r)
< C4 { <I’l> HP” dsa”/n WH;[‘/,(R) + <n> H(Pn _Pn ) Qia”/” W”Z](R)

<CK, <f, w, <‘;>>q (6.10)

so that (6.6) and (6.10) give the result. |
We can now give:
Proof of Corollary 1.7(a). We shall show that
WA ) (f X R 1t <201 < Crt" [ OPTW 1y (6.11)
and

inf  [[W(f = P)llL, 14200 < Cat" ISP W ). (6.12)
1

Pe?, _

We begin with:

Proof of (6.11). We begin with an observation.
If A>0 we may write

|45/, x, R)| =

h/2 h/2 h/2 )
f J J SOAx+t,+ - +1,)dtydty---dt,
—h/2 Y —h/2 —h/2

/2 .
<h“‘f £ (x + 5)] ds. (6.13)

—hrj2

Now note that for se [ —rh®(x)/2, rh® (x)/2] and xe [ —a(2t), a(2t)] we
have by (2.26)

@,(X) ~ djt(x +S)
Thus we may deduce from (6.13) that for |x| <a(2¢) as
| WAqu,(x)(f» x, R)|

rhd (x)/2

1
<Cih——
> (rh (x))2) J—rhrﬁ,(x)/z

\WfOD (x+s)| ds.  (6.14)
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Case 1. p>1. We recall the definition of the maximal function
operator

1 u
MLgr)(x)i=sup o[ [g(x-+s)| ds

u>0

which is bounded from L, to L,, 1 <p < oo. It follows that (6.14) can be
rewritten as

I WA g (%, R 1t <2001 < Calt” [MEW® T 1)
SCst" [ fPDTW 1 w)-

Case 2. p=1. Integrating (6.14) and noting that if u=x +s, then for
the range of x and s above,

¢t(x) ~ @t(x + S),

we obtain

| WA o f. %, R)| dx
|x| <o(21)

1
<Ch ! f j \WfOD"| (x +5) ds dx
Ixl <oz PAX) s <on2) 8,00
1
<C,h ! | WO (u) ds du
7 L::x+s:\x|<a(2z) CD,(M) ! '[Is\é(rh/Z)(P,(u)

[sl < (r/2)h®(x)

< cgh*[ |FOWD!| (u) du.
R

Next we give:

Proof of (6.12). We mimic the proof of (4.2) for p> 1. For the given
t>0, write 4t=a,/u. Determine n=n(t) by (1.18) and recall u~n (see
(2.26)) so that

(a) o(41)<a,<a,,
(6.15)
(b) a(dt)=a,,>ag,

for some «>1 and f>0.
As in the proof of (5.9), we may without loss of generality suppose that
x> 0. Suppose first that » =1. We have
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inf  [|W(f— P)HL,,[xza(m] <| W(f_f(aﬁn))HLp[xZaﬁn]

Pe?,
Wi(x f'(u) du

a/fn Lp [x=> gy ]

<Cy— s WY

S 4nT(a,,)l/2 Lp[xzu/m]
a,

< CSW IWF x> a1

<C ai” W’

< 6T(O’(l))1/2nH f”L]7[x2aﬂn]

a}’l !
<O EIW D1 may (6.16)

by Lemma 4.2, (2.2), and (2.16).
Assume (6.16) holds for 1, 2, ..., r— 1. Choose Se€Z._, such that

r—1
°r 4y Nd’ —
IS =) 1 1= o101 < C <n> LFOD W .

Set

P(x) := flag,) +f u) du.
ag,

Then we can bound the left hand side of (6.12) by

[ W(f—P)HLI,[x>uﬁ”] <G

W) [ (= S)w) du
ag,

L,,[x)a,in]

<G JOwer,

p[ x?ttﬂ”]

an
" Ta)"

< Got” Hf(r)@; WHLP([R{) (6.17)
and we have our result. |

Finally we give:



396 S. B. DAMELIN

Proof of Corollary 1.7(b). Write t =a,/u and let n =n(t) be determined
by (1.18).
Firstly

Ko s W)= ot {1 = PYW o 0 WP )
>0t {1 =) W1y 17 I W8]y}
=K} (. W, 1). (6.18)
Next, we may choose g such that
IS =) Wil + " WD 1y <2KFE(f, Wo ). (6.19)

Also by Lemma 6.1, Theorem 1.3, and Corollary 1.4 we may choose P,
such that

an
1Py~ &)W 0% Co, (2 .22 (620)
and
an " (r) ¥ an
n Iwe, QS,HL/,(R)é Cw, | & I’Va; . (6.21)

Thus by (6.19)-(6.21) we have

K, (f. W. 1)
< =P Wy + 1 | WPLD]

<Gyl H(f_g) W”Lp(u;e) +(g—P,) W”Lp(R) +1 WP;)')(D; HLP(R)]
an

<€ I =) Wl (222

SG LIS =@ Wle, @ +w, (& W, 1)] (by (6.2))

<SG =g Wl w+1 187D, W, ]  (by Corollary 1.7(a))

< CsKF (fs W, 1), (6.22)

Then (6.18) and (6.22) give the result. ||
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